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Preface

Physics is a prerequisite for courses in the curriculum of junior

colleges, evening engineering schools, technical institutes, and
advanced trade schools, owing to the fundamental position of the

subject in all branches of engineering work. This book is one of a

series of applied science textbooks designed to meet the needs of

schools where a more concise course is given than is found in the

average college physics textbook, and where numerous topics not

found in a preparatory course in physics are essential.

The orthodox arrangement of, first, mechanics, then sound, heat,

electricity, and light is followed. Numerous illustrative problems
are completely worked out. A summary of the irreducible minimum
of algebra, geometry, and trigonometry necessary for a clear under-

standing of physics is included in the appendices.
Modern viewpoints on light have been employed, while at the

same time the full advantage of the wave theory of light has been

retained. The electron current is used exclusively, rather than the

conventional positive current. The practical electrical units are used

instead of the two c.g.s. electrical systems of units. As preparation
for this, the kilogram-meter-second system, as well as the English

system of units, is used in mechanics. Likewise the kilogram-calorie

is used instead of the gram-calorie.

This work is the outgrowth of the author's experience in teaching

engineering physics to many groups of students in evening engi-

neering schools. The material was developed and tested in the

class room over a period of many years. It has proven effective

for students whose needs for practical and applied knowledge of

mechanics, heat, light, and electricity were paramount.
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CHAPTER I

Introduction

*-2^

1-1. Why Study Physics? By far the larger group of subjects

in the curriculum of the average school is that containing history,

psychology, biology, sociology, languages, and philosophy, which de-

pend for their importance on their direct relations to living, intelli-

gent beings. The smaller group contains, for example, physics, chem-

istry, astronomy, and geology, all of which deal with inanimate

nature; we study these either out of a sheer

desire for knowledge for its own sake, or be-

cause of possible applications of this informa-

tion in our daily lives. Mathematics occupies

something of a middle position; it consists of

a set of rules in accordance with which a series

of operations are performed, but in this case

it is we who devise the rules. All we ask of

these rules is consistency. Most of us hope
that the mathematical rules will also be use-

fill (and it is true that they usually are) ; yet there is gossip to the

effect that certain mathematicians have been guilty of praying that

no practical use would ever be found for their particular creations.

^
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But mathematics is a subject that requires rigorous concentration

for its mastery, and therefore is not overpopular. Much of physics
is hidden from the nonmathematician. The demand for physicists

considerably exceeds the supply. This book contains a minimum of

mathematics. It is written for those who quite frankly intend to

use physics as a prerequisite for engineering.

1-2. What Is the Territory of Physics? Pure physics con-

cerns itself with things that our senses reveal to us : heat, electricity,

natural forces, forms of energy, properties of matter, sound, and light;

we also find it convenient to add to this list all sorts of devices made

by man which depend on a knowledge of natural phenomena. By
means of the telescope and spectroscope, the sense of sight is extended

to such enormous distances that we are enabled to tell the sizes,

chemical constitutions, temperatures, physical states, amount, and

direction of motion of objects completely invisible to the naked eye.

We also have knowledge of particles so small that they are beyond the

power of being made visible by the best optical or electron microscope
that man has yet invented. And the science of physics is still growing.
We continue to observe facts about nature. We are still inventing
theories to fit these facts. The theories often lead us to suspect the

existence of new facts as yet undiscovered. Then we carry out ex-

periments in search of these supposed new facts. Sometimes we
discover that the "facts" do not exist, and as a result we have to

throw away the theory which involved them. If on the other hand
the facts are there, our respect for the theory increases. Physics is a

study of the facts of the nonliving part of nature together with those

interconnecting theories that so far have stood the test of experiment.
1-3. Why Is Physics the Basis of All Engineering Training?

Engineering schools train students to be civil engineers, mechanical

engineers, metallurgical engineers, electrical engineers, illuminating

engineers, biological engineers, chemical engineers, sanitary engi-

neers, marine engineers, torpedo engineers, public health engineers,

naval engineers, and aeronautical engineers. Almost anyone reading
this list will take pleasure in adding to it. But all of these branches

of engineering grow directly from the subdivisions of physics itself or

from the closely associated sciences of chemistry and biology. Phys-
ics itself includes at present the subjects of mechanics, sound, heat,

magnetism, electricity, and light. Formerly all the natural sciences

combined, including physics, chemistry, astronomy, and biology,
were considered to be within the capabilities of single individuals to

master. But as these sciences grew in scope, it became increasingly
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difficult for any one man to master them all, or even any one of them.

Today it is the business of chemistry to study several hundred thou-

sand compounds; of astronomy, to catalogue nearly 100 billion stars

in our own galaxy along with a billion other galaxies; and of biology,
to classify hundreds of thousands of zoological and botanical species.

Yet in these three sciences the relationships between entities are far

more important than the large numbers of entities involved. And
even as chemistry and astronomy are already considered as separate

sciences, it may well be that other portions will in the future be de-

tached from physics, but physics will still remain basic, not only to

the other "physical sciences/' but to all branches of engineering.

1-4. Physical Facts. The two important things in our uni-

verse as we know it are energy and intelligence. The latter we leave

to psychologists, biologists, and philosophers, and confine our atten-

tion to the former. At a suitable point, we shall define energy, and

later we shall see that one of the manifestations of

energy is matter. For the present, however, we shall

find it convenient to take over a few terms from

everyday life such as time and space, and by means
of these, define more terms for technical use. Once

we have defined a technical term, we shall be care-

ful not to use that word in any other way, and

physical facts of a general type (often called laws

or principles) will be stated using these technical

terms. Although matter is sometimes defined as

that which occupies space, we must remember that a vacuum

(absence of matter) also occupies space, and furthermore that a

vacuum has pronounced physical properties. Consequently it will

be better at present to think of matter as the substance of which

physical bodies are made, and reserve until later a discussion of

the method of measuring quantity of matter, or mass. We may
temporarily think of energy as a storehouse out of which comes

the ability to change either the shape or the state of motion of

matter. A physicalfact may be described as something that actually
can be demonstrated in the laboratory to a high degree of precision

(although never to a precision of one hundred per cent, for both

practical and theoretical reasons). We shall not be surprised at the

necessity of discarding a theory occasionally for a better one, but we
do expect our physical facts, once established, to remain physical facts.

1-5. Physical Theories. A large collection of isolated physical

facts without any interconnecting theory would be hard to keep in



4 INTRODUCTION [1-6

mind, and for this reason would lose much of its usefulness to the

engineer. The mathematical network, as self-consistent as geometry,
which has been developed slowly over the years, and which weaves

together the vast accumulation of physical data into one integrated

whole, is referred to as physical theory. Thus we talk of the theory of

elasticity, electrical theory, theory of light; or even in connection

with mechanical devices we are apt to ask, "What is the theory back

of that machine?" The importance of theory, however, increases as

the student becomes more advanced. In this elementary treatment

of physics, we shall be much more concerned with facts than with

theory.

1-6. Units. In concluding this chapter, it is proper to say a

few words about units. Outside of the field of electricity, the engineer
finds that he can get along very well with just three fundamental

units: a unit of time, say the second; a unit of distance, such as the

foot or the meter
\
and a unit of force, for example the pound or the

newton. In defining the second, it is customary to divide the length
of the average "solar day" into 86,400 equal parts (24 X 60 X 60).

The second is common to both the English and metric systems. As a

basis for the units of the metric system, there are carefully preserved
two pieces of metal at as nearly as possible constant conditions. The
distance between two fine scratches on one of them is taken by the

scientific world as the definition of the meter, and the mass of the

other piece of metal defines the kilogram. A newton is somewhat

smaller than the kilogram; a kilogram weighs about 9.8 newtons. In

London there exist similarly the standard yard and the standard

pound. Such units as the foot per second, the foot-pound, and so on

are obvious combinations of these fundamental units. There are

3.2808 feet in a meter, and 2.2046 pounds in a kilogram. In the

United States, we are legally on the metric system; ourfoot is defined
1200 ,

4 , , 1 r i -ias ^r^r of a meter, and our pound as TT-^TZTO * a kilogram.

SUMMARY OF CHAPTER 1

Technical Terms Defined

Physics. Physics is a study of the facts of inanimate nature together with

the theories that thus far have stood the test of experiment.

Fact. Facts, in physics, are the direct result of physical experimentation
and observation.

Theory. An assumption or system of assumptions not only mutually con-

sistent, but also consistent with all known facts.
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Physical Unit. An arbitrary portion of a physical quantity, of a con-

venient size, and established by general agreement.

Second.
5455

of a mean solar day.

Meter. Distance at the temperature of melting ice between two scratches

on a platinum-iridium bar preserved at the International Bureau of

Weights and Measures, Paris, France.

Yard. In England, the distance between two scratches on a standard bar

preserved at London. In the United States ^25 of a meter. This makes
one meter equal to 3.2808 feet.

Kilogram. The amount of matter in a certain platinum cylinder also

preserved at Paris, France.

Newton. A unit of force or weight which will be found to tie in with both

the metric system and the practical system of electrical units. One

kilogram weighs about 9.8 newtons.

Pound. The United States pound is defined by law as Tr^Trrr^ of a
...

r J 2.204622
kilogram.

EXERCISES AND PROBLEMS

1-1. Name ten practical illustrations of physical principles, so dis-

tributed that at least one application will be drawn from each of the five

branches of physics.

1-2. As an illustration of the terms fact and theory, state a nonphysical
fact; also a nonphysical theory.

1-3. Mention several important industries of today which owe their

existence entirely to theories developed during the previous century.

1-4. From the data in section 1-6, find* the number of inches in a meter;
also the number of kilograms in an ounce.

1-5. How many newtons are there in a pound?
1-6. If there are 62.4 pounds of water in a cubic foot, find the number of

kilograms of water in a cubic meter.



CHAPTER 2

Newton's Laws

2-1. Historical. One of the earliest books on physics was written

by Aristotle (385-322 B.C.)- He was a remarkable man, and is

credited with having possessed the most encyclopedic mind in all

history. However, Aristotle lived before the experimental era, and
for this reason he made many statements that could have been dis-

proved easily by simple trial. One of these statements, concerning

falling weights, was not shown to be false until the time of Galileo

(1564r-1642). Galileo made numerous scientific discoveries, but due
to ecclesiastical and civil opposition, he never reached the point of

generalizing his findings; on the contrary, he was forced to renounce
some of them as false! Sir Isaac Newton (1642-1727) was born in

England the year Galileo died in Italy. He too had a most unusual

mind, and an almost uncanny sense regarding physical phenomena.
Moreover, he had the advantage of living at a time when it had be-

come customary to perform scientific experiments before drawing
physical conclusions. Newton published a book in 1687 (written in

Latin, which was then a universal scientific language), in which he
summarized Galileo's work in the form of three laws that are known
to this day as Newton's first, second, and third laws respectively.
These laws are the basis of what is known as Newtonian mechanics.

They hold for distances somewhat greater than those between atoms

up to astronomical distances. (Advanced students will learn that,
for atomic dimensions, we have to use what is known as quantum
mechanics, a form of mechanics which automatically becomes New-

6
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Ionian mechanics with increased distances). Therefore, for the pur-

poses of the engineer, there is no need of questioning the exactness

of Newton's laws.

2-2. Newton's First Law. If we should pass by a store win-

dow in which a croquet ball was busily engaged in rolling about in

such a way as to describe figure eights, our intuition would tell us,

"Something is wrong; there is more here than

meets the eye!" We all have in mind a notion

of what an object ought to do when left to

itself, and it is not to describe figure eights. If

we start an object sliding along a smooth sur-

face, then leave it to itself, the object will move
more and more slowly in a straight line and

finally come to rest. If we repeat the experi-

ment on a still smoother surface, say some

glare ice, the object will take much longer to come to rest, and

still continue to travel along a straight line. But it is not correct in

either of these two cases to say that the object is left to itself. In

both cases, forces of friction were slowing down the moving object.

If there were actually zero friction, the object would never come to

rest when "left to itself." This statement constitutes a part of New-
ton's first law. A more complete statement is as follows: A body

left to itself will remain at rest if it is already at rest, and if it is already

in motion, it will continue in motion with uniform velocity in a straight

line.

Newton's first law represents such an idealization that we never

encounter a pure case of it in practice. No object that we have ever

met can be said to be "left to itself." Gravitation is always present

to pull objects toward the earth
;
friction or air resistance is always

acting to slow down the motion of bodies. In fact, it would even be

difficult to say just what we mean by "at rest." Any table in front

of us which appears to be at rest is moving about 700 miles per hour

due to the rotation of the earth, about 66,000 miles per hour due to

the earth's orbital motion about the sun, and faster yet on account

of galactic rotation. In general we consider it a sufficiently good
illustration of Newton's first law if we find ourselves nearly plunging
over the seat in front of us on a trolley when the motorman suddenly

applies the brakes. We were in motion and physical law does its best

to keep us in motion! Another illustration is the possibility of re-

moving a book from under a pile of books by means of a quick jerk.

The books on top were at rest and they therefore tend to remain so.
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The property of matter by virtue of which it is necessary to apply
a force in order to change its condition of rest or motion is called the

inertia of matter. The inertia of a body at a particular point on the

earth's surface is proportional to (but not equal to) its weight.

2-3. Technical Terms. By the time we have completed this

course in physics, we shall find ourselves using in a very particular

way a list of something under a hundred words, one of which (inertia)

was mentioned in the previous section. Many of these words are

already familiar to us; we shall merely restrict their rather long list

of everyday meanings to some one scientific meaning. Time and

distance may well appear at an early point on our list of technical

terms. Time in physics means measured or measurable duration, and

nothing else. It does not mean the pleasant or unpleasant evening
we have just spent or the jail sentence we did or did not serve.

Similarly, distance in physics means measured or measurable space,

and nothing else. It does not mean the separation in relationship be-

tween a couple of third cousins, or the lack of cordiality in manner

affected by one's former friend. Another word that we must define

to get well started on our subject is force. A force is defined as that

which will tend to produce a change in the size or shape of an object. A
force will also produce other effects such as changes in the motions

of objects, but this relationship will be reserved to enable us to define

mass when the time comes. Everyday terms which are practically

equivalent to force or at least special cases of force are : push, pull,

resistance, tension, effort, attraction, repulsion, friction, thrust, com-

pression, and so on. With combinations of the three words, time,

distance, and force, we shall find it possible eventually to produce a

fairly comprehensive list of technical terms.

2-4. Newton's Second Law. The next question to be asked

concerns the behavior of an object when it is not left to itself, that is,

when a push or a pull is applied. Under these conditions the object
deviates from its uniform straight-line motion in accordance with the

size and direction of the force that is being applied. This is Newton's

second law. If the force is applied to the object in the direction of the

motion and not balanced by an opposing force, such as friction, the

object will move faster and faster. In practice it becomes difficult

after a time to continue to apply this unbalanced force, otherwise

there would be no limit to the velocities which could be acquired.
2-5. Newton's Third Law. A force is always exerted by some

object on some other object. The only one of these bodies that inter-

ests the engineer is the one on which the forces act; these forces de-
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termine the subsequent motion of the object involved, or help to

hold it in equilibrium, or tend to change its size or shape. A force

that is exerted by an object will have no direct influence on that

object, but will affect some other object on which the same force is

being exerted. Newton's third law, however, states that forces al-

ways exist in pairs, and that a force exerted on an object is to be

paired with an equal and opposite force exerted by the object, the

latter being of no interest unless we decide to include in our investi-

gation the other body upon which that happens to be acting. A
more useful statement of Newton's third law will include for each

force the object exerting the force as well as the object upon which

the force is exerted. Thus, Newton's third law may be restated as

follows: // body A exerts a force on body B, then under all conditions

and with no exceptions, body B will simultaneously exert an equal and

opposite force on body A. From what has just been said, it will be

clear that only one of these two forces will affect body A and the

other will affect body B. A common way of stating this law is to

say that "action and reaction are equal."
Isaac Newton would be somewhat surprised if he should return

to earth and hear some of the erroneous statements occasionally

made about this law. For example, one such boner makes the law

apply only at uniform speeds, and another leaves the impression that

it applies only in such cases as tugs of war with the teams evenly
balanced. But as a matter of fact, if there were any exceptions at all

to this law, one of the most important generalizations of all physics
would cease to hold, namely the law of conservation of energy.
THERE ARE NO EXCEPTIONS TO NEWTON'S THIRD LAW.

Another point in connection with this law sometimes disturbs the

student. If the two forces involved in the law arc always equal and

opposite to each other, why do they not balance each other, and

since there are no cases where the law does not hold, then how can

anything ever happen in the physical universe? A careful reading of

the first paragraph of this section will help to answer this question.

Two forces will never balance each other unless they act upon the

same body. For example, if I exert an upward force of 25 pounds

upon a suitcase and you exert a downward force of 25 pounds upon



10 NEWTON'S LAWS [2-6

some spot on the floor, the forces will be equal and opposite, but they
will not balance each other because they act upon different bodies.

Body A and body B are two different bodies, and since one force is

exerted on each, there is no chance of the forces balancing each other.

2-6. Examples of Forces Which Do and Do Not Illustrate Newton's

Third Law. The two sparrows and the worm furnish several illustrations

of Newton's third law as well as several combinations of forces that do not

illustrate the law. The ground pushes up on the left-hand sparrow and this

sparrow pushes down on the ground with an equal and opposite force. This

illustrates the law. But these two forces do not balance each other because

one acts on the sparrow and the other on the ground. The left-hand sparrow
exerts a force toward the left on the worm and the worm exerts an equal
force toward the right on the sparrow. These forces also illustrate the law,

and again they do not balance each other because one force acts on the

worm and the other on the sparrow. Now consider some forces that do

balance each other and therefore do not illustrate Newton's third law.

Gravity pulls down on the left-hand sparrow and the ground pushes up
on this sparrow. These forces are equal and opposite to each other and

they both act upon the same object, the sparrow. They balance each other

but they do not illustrate Newton's third law. Similarly both sparrows
exert opposing forces on the worm. If these forces are numerically equal,

they balance, but they do not illustrate Newton's third law. When two
forces balance each other, they do not illustrate Newton's third law; and
when two forces illustrate Newton's third law, they do not balance each other.

2-7. Newton's Law of Gravitation. It has long been under-

stood that bodies free to do so "fall," but it was not until the time of

Sir Isaac Newton that the relations between the forces and the

masses of the objects involved were clearly stated. Since the forces

are small except when objects of astronomical size are concerned, it

will probably be best to get the astronomer's point of view in this

discussion, although once more the law under consideration is per-

fectly general and holds between two small objects just as well as for

two large objects like the sun and earth. The sun and the earth each

exert an attracting force on the other. By the third law, stated in the

previous section, the forces exerted by the sun and earth on each

other are equal and opposite; by the law now about to be stated,

these forces each depend on the distance between, as well as on the

masses of, the sun and the earth. As the mathematician would put
it, either of these forces is directly proportional to the product of the

two masses and inversely proportional to the square of the distance

between them. But, if we are not yet expert mathematicians, it may
be well to put it somewhat differently. Any object in the universe

exerts a gravitational attraction upon every other object. When we

compare these attracting forces we find two things to be true: (1) if
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we double the mass of either body the force will also double, or if we
increase either mass by any number of times the force will increase

the same number of times, and (2) if we double the distance between

these objects the force will be reduced to one quarter of the original

value, or if we multiply the distance between the bodies by any
factor, the new force will be found by dividing by the square of

this factor.*

2-8. Illustrations. As an illustration of how small the force of gravita-
tion is for small objects, imagine two spheres made of about the heaviest

material on our planet. Gold is 19.3 times, and osmium 22.5 times as heavy
as water. Let one of these spheres weigh one ton and the other two tons,

and let their centers be two feet apart. The gravitational force of attraction

that either, of these spheres would exert on the other would figure out to be

just under half a grain (0.466 grain). Since there are 7,000 grains to the

pound avoirdupois, this is rather a feeble force. Yet if one of the two objects
to be considered is the earth itself (about 6,570,000,000,000,000,000,000

tons) and the other is, say a one-pound body on the earth's surface, with the

centers of the two objects now four thousand miles apart (approximately
the earth's radius), then either will exert on the other an attracting force of

one pound. The gravitational force exerted by the earth on some object

upon its surface is known technically as the weight of this object. If our

one-pound body is now removed from the surface of the earth to a distance

of 240,000 miles, which is about sixty times as far from the earth's center,

its weight will then be reduced to -^QQ of a pound. However, its mass,

that is, the amount of matter in it, will still remain the same.

2-9. How the Law Was Discovered. The story of the dis-

covery of the law of gravitation involves principally three men:

Tycho Brahe (1546-1601), a Danish astronomer; Johann Kepler

(1571-1630), a German astronomer and mathematician; and Isaac

Newton. Brahe made a series of painstaking observations on the

positions of the planets of our solar system over a considerable

period of time, making no particular effort to deduce anything there-

from. With Brahe's mass of data before him, Kepler drew the con-

clusions (1) that the paths of the planets about the sun are ellipses,

and not circles as had been previously supposed, and that the sun

was at a focus and not at the center, (2) that a line, joining the center

of the sun with the center of the planet, sweeps over equal areas in

* The mathematical statement of this law is as follows. If m\ and m<t represent two masses

expressed in kilograms, d is the distance between them in meters, and F the gravitational force

in newtons pulling each mass toward the other, then

where kz is the physical quantity 6.66 X 10~u newton-meter2 per kilogram
1
,
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equal times, and (3) that the time that it takes for each planet to go
around the sun once is proportional to the square root of the cube of

its average distance from the sun. But Kepler made no effort to

answer the question as to why the planets behave in this way. This

was Newton's problem; he discovered that the law of gravitation

described in section 2-7 would just account for Kepler's conclusions.

As a final test, Newton then tried his law of gravitation on the moon,

using data then available. To his dismay, the law failed to account

for the data; so Newton tucked his work away in a drawer and busied

himself with other things. Years afterward, his attention was called

to new data bearing on the problem; he dug out his nearly forgotten

work, and lo! it now checked beautifully. And so he published his

results without further delay.

2-10. Illustrative Problem. If a man can leap five feet in a standing

high jump contest on the earth, how high could he leap in a similar contest

on the moon, assuming (1) that he had the same strength on the moon as on

the earth, (2) that the mass of the moon is one eightieth of that of the earth,

and (3) that the radius of the moon is one fourth of the earth's radius?

Solution: If we first focus our attention on the fact that the two objects
involved in the problem are now the man and the moon instead of the man
and the earth, remembering that the force of gravitation increases when
either mass increases and vice versa, our first conclusion is that the man
now appears to weigh only one eightieth as much on the moon as on the

earth. This would mean that he could jump eighty times five feet or 400

feet! But the gravitational force also depends on the distance between the

gravitating bodies. On the moon the centers of the two objects (the moon
and the man) are only one fourth as far apart as on the earth, and since four

squared is sixteen, the force of gravitation will be increased sixteen times on

this account. This will decrease the height to which he can jump by a factor

of sixteen. Four hundred divided by sixteen is twenty-five; our answer is

therefore that the man can leap to a height of twenty-five feet on the moon.
He could thus jump over a small house without difficulty.

SUMMARY OF CHAPTER 2

Technical Terms Defined

Time. Time is measured or measurable duration.

Distance. Distance is measured or measurable space of one dimension.

Force. A force is that which will tend to produce a change in the size or

shape of an object. Familiar synonyms are push, pull.

Inertia. Inertia is that property of matter which causes it, in the absence

of all forces, to remain at rest when at rest, and when in motion, to con-

tinue in motion at uniform speed in a straight line. An equivalent defini-

tion is: inertia is that property of matter by virtue of which it is necessary
to apply a force in order to change its condition of rest or motion.
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Gravitation. The phenomenon that any two particles in the universe exert

attracting forces on each other.

Weight. The gravitational attraction in the special case when one of the

objects concerned is the earth and the other object is a body on the sur-

face of the earth. Common synomyms are "the pull of gravity" or "the

force of gravity."

Laws

Newton's First Law. Inertia is a universal property of matter.

Newton's Second Law. When a force is applied to a body, the body will

deviate from its condition of rest or uniform straight-line motion in

accordance with the size and direction of the force that is being applied.

Newton's Third Law. If one body exerts a force upon a second body, the

second body will simultaneously exert an equal and opposite force upon
the first body.

Newton's Law of Universal Gravitation. Every particle in the universe

exerts on every other particle a force of attraction that is directly pro-

portional to the masses of the two particles, and inversely proportional
to the square of their distance apart.

EXERCISES AND PROBLEMS

2-1. A man standing on a stepladder pushes downward on the step-
ladder. According to Newton's third law, by what is the reacting force

exerted, and on what is it exerted?

2-2. If every force is accompanied by an equal and opposite reacting
force, why do the acting and reacting forces never balance each other? How
would one proceed to accomplish something in a physical world that was

put together on the basis that whenever a force acted on a body, another

force, equal and opposite to the first, acted on the same body?
2-3. If one of the sparrows in section 2-5 pulled harder than the other,

would there still be an illustration of Newton's third law in the sketch?

Give a reason for your answer.

2-4. In order for an automobile to start forward from rest, something
must push forward on the car. Can the car itself exert this forward push on
itself? What outside agency is capable of exerting a forward push on the

car, and why?
2-5. Give an illustration of Newton's first law.

2-6. Give an illustration of Newton's second law.

2-7. If the sun weighs 300,000 times as much as the earth and has a
diameter 100 times that of the earth, how much would an object that weighs
150 pounds upon the surface of the earth weigh upon tHe surface of the sun?

2-8. If a 2,000-pound projectile can be made to rise 100 miles above the

surface of the earth, what does it weigh at this altitude?

2-9. The earth is flattened at its poles. Where would a certain gold
brick weigh more, in Alaska or in New York?

2-10. Isaac Newton is said to have constructed a horseless carriage
which went by jet propulsion. Which one of his laws was involved most
in the operation of the carriage?



CHAPTER 3

Force; Work; Energy; Power

3-1. Force. Consider a boy pushing a sled along a straight route.

The sled is traveling in a more or less irregular fashion subject to

two varying forces, one of which opposes the motion and is due to

friction, while the other is the force exerted by the boy pushing the

sled. If the two forces were uniform as well

as equal and opposite, then, in accordance

with Newton's first law, the sled would con-

tinue moving along its straight path with

constant speed if it were already moving, or

remain at rest if it were already at rest. If

the route remains straight, the greatest compli-
cation that we can have in the matter of

forces will be as to whether they are positive or negative, that is,

whether, the forces act along the line in one direction or the other.

3-2. Work. In physics, the word work has a very limited and

important use. Technically, no work is done unless something moves.

An artist's model does no work in the physical sense while he is pos-

ing, although the model earns a living thereby and is tired at the end
of a long session. In order to compute the numerical value of the

work done on a body, it is necessary to multiply the force exerted on
the body by the distance that the body moves. Also, in computing
the work done, the force that is multiplied by the distance must be

14
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parallel to that distance. If we multiply a force, expressed in pounds,

by a distance, expressed in feet, the product is said to be expressed in

foot-pounds. We shall, then, define work as the product of a force

acting on a body multiplied by the distance through which the body

moves, in a direction parallel to the force.

If the boy mentioned in the preceding section exerts a constant

forward force of 20 pounds on a sled which during the process moves
forward 50 feet, we may compute the work he has done by multi-

plying 20 pounds by 50 feet. The product has a two-fold aspect:

one part is numerical, 1,000 in this case, and the other feature is the

unit involved, foot-pounds, obtained by combining the feet with the

pounds through the use of a hyphen. Thus the work done by the boy
is 1,000 foot-pounds. Other possible units of work are foot-tons,

newton-meters (which are called joules), and so on; any unit of force

may be hyphenated with a unit of distance to obtain a unit of work.

Work also may be negative. Suppose a man to walk along a

track behind a slowly moving freight car for 10 feet, exerting a back-

ward force of 40 pounds on the car. Since the force and the distance

are in opposite directions, it is customary to call one of them positive

and the other negative; which is which is immaterial so long as we
make a definite choice. The product of a positive 10 feet and a nega-
tive 40 pounds is a negative 400 foot-pounds of work done by the

man on the freight car.

Another illustration of negative work can be obtained from the

boy-sled problem. Suppose a force of friction of 20 pounds to oppose
the motion of the sled throughout the 50-foot distance. Then the

work would be a negative 1,000 foot-pounds of work done by friction

on the sled.

Another way of looking at negative energy may seem more

reasonable. According to Newton's third law, when a man exerts a

backward force of 40 pounds on a freight car, the freight car exerts

a forward force of 40 pounds on the man. If we multiply this for-

ward 40-pound force by the distance the man moves, 10 feet, we
obtain a positive 400 foot-pounds of work. That is, while the man
does a negative 400 foot-pounds of work on the car, the car does a

positive 400 foot-pounds of work on the man. Since this happens

every time work is done, it begins to look as if work is something that

can not be created out of nothing; whenever there is positive work

done, negative work is also done to the same extent. Of the two

objects or bodies involved, one is the giver and the other is the

recipient; something is passed along.
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3-3. Energy. Conservation of Energy. The "something"
that is involved in the work situation mentioned in the previous sec-

tion is called energy. Energy is the ability to do work; it is measured

in terms of the same units that we use for work, foot-pounds, joules,

and so on. The idea at the end of the previous section may thus be

expressed in terms of energy: whenever a body gains energy it is

always at the expense of some other body. It therefore seems reason-

able to assume that the total energy in the universe is a constant.

This statement is known as the "law of conservation of energy,"
which is a direct consequence of Newton's third law, and to the

present, no exceptions to it have been found either in nature or in

the laboratory. The law of conservation of energy denies the pos-

sibility of such things as perpetual motion machines, which are

efforts to create energy out of nothing.

In the boy-sled illustration, there were two transfers of energy:

1,000 foot-pounds of energy passed from the boy to the sled and 1,000

foot-pounds of energy were transferred to the surfaces responsible for

the frictional force, this time into the form of heat-energy. Frictional

forces may or may not be accompanied by motion. When there is

motion against friction, heat energy is always developed, which may
be computed by multiplying the frictional force by the distance. If

there is no motion, no energy relations are involved.

3-4. Illustrations of Energy. A partial list of the many
ways in which it is possible to do work and therefore to store energy
is as follows: (1) by compressing a gas, which can expand and give

the work back, (2) by coiling a spring, which can uncoil and drive a

watch, (3) by raising a weight, (4) by setting a body in motion, (5) by
raising the temperature of a body, (6) by changing the state of a

body from solid to liquid or from liquid to gas, (7) by charging a

storage battery or condenser, (8) by creating a magnetic field, (9) by
creating waves in liquids or solids, or sound waves in air, and (10) by
producing radiation, which may travel for thousands of years from

one star to another. There are other forms of energy which are quite

interesting. If we should divide a piece of paper into sufficiently

small pieces, there would come a time at length when any further

subdivision would result in substances that were no longer paper,
but more simple chemicals, namely, carbon, hydrogen, and oxygen.
The smallest portion that could still be called paper is termed a

molecule; one molecule of paper consists of a group of carbon, hydro-

gen, and oxygen atoms. Random molecular motion, that is, .hap-

hazard motions of individual' molecules relative to each other,
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constitutes heat energy. Rearrangements of atoms to form different

kinds of molecules involve changes in chemical energy; the burning
of paper, the rusting of iron, and the explosion of gunpowder are

examples. The atoms themselves are also complicated structures

which we shall describe later. It is difficult to disintegrate atoms;
for many years scientists considered it completely impossible. But
when certain atoms are split up (for example, by exposure to slowly

moving subatomic entities called neutrons), tremendous energy

changes take place such as those involved in radioactivity, both

natural and artificial, and in "atomic bombs"
;
when the atom is split,

we notice that some matter disappears and energy appears in its

place. That is, matter itself is one form of energy.
All sorts of energy can be converted into all other kinds of energy,

but to varying extents. For example, any form of energy may be

converted one hundred per cent into heat energy, but it is possible

to convert only a relatively small per cent of heat energy into

mechanical, electrical, chemical, or other forms of energy.

3-5. Potential Energy. The type of energy that results from

raising a weight ((3) in section 3-4) is called energy of position, or

potential energy. When we wind a cuckoo clock we store energy of

this kind. To find its value we have merely to compute the work

done in raising the weight. The necessary force is upward and is

equal numerically to the weight W lifted; the distance h is also

upward, therefore the potential energy is the product of W and h,

and may be measured in foot-pounds, joules, or any other convenient

unit of work.
Potential energy = Wh

Putting two quantities next to each other, as Wh, implies multi-

plying one by the other. Division is represented in algebra by the

fraction notation;
f

for example six divided by two equals three

would be written - = 3.

3-6. Kinetic Energy. The type of energy that results from

setting a body in motion ((4) in section 3-4) is called kinetic energy,

or energy of motion. It will be discussed again in connection with the

question of change of velocity, but its formula will be stated here for

reference purposes.

TT- 4
.

Kinetic energy =

In this expression, v is the velocity of a moving body the weight
of which is W, and g represents a constant the numerical value of
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which is 32.2 feet per second per second or 9.80 meters per second

per second. We have met this constant in its metric form as the

ratio between a kilogram and a newton. Both forms will appear
on numerous occasions again. Note that when W is in pounds, v

in feet per second (which may be written ft/sec.), and g in feet

per second per second (which may be written ft/sec.
2
), the kinetic

energy will come out in foot-pounds. That is

, A ,
/ feet V

(pounds) I r I

.
A j Vsecond/

foot-pounds = j Tr
feet

second2

If W is in newtons, v in meters per second, and g in meters per
second squared, the kinetic energy will come out in newton-meters

(or joules).

3-7. Illustrative Problem. One boy is drawing another on a cart. The
tension in the tongue (which is horizontal) is 30 pounds. Find the work

done in drawing the cart a horizontal distance of 200 feet. Express the

answer both in foot-pounds and in joules.

The product of the horizontal forward force (30 pounds) and the hori-

zontal distance (200 feet) is 6,000 foot-pounds, which is one answer. Since

there are 4.45 newtons in a pound (see problem 1-5) and 0.305 meter in a

foot, the forward force of 30 pounds may be expressed as 133.5 newtons and

the 200 feet as 71.0 meters. Therefore the work may also be expressed as

the product of 133.5 newtons by 71.0 meters or 9,480 ncwton-meters, or

9,480 joules, which is the second answer required.

3-8. Second Illustrative Problem. A ball weighing one pound is

thrown vertically upward with a speed of 100 feet per second. What is the

kinetic energy given it by the thrower? If the ball continues to rise until its

kinetic energy is zero and its potential energy is equal to the original value

of the kinetic energy, how high will it rise?

Since the kinetic energy of the ball is Wv2
/2g, where W = 1.00 pound,

v = 100 feet per second (this is written 100 feet/second because distance

must be divided by time to get the speed), and g = 32.2 feet/second
2

,
the

kinetic energy is (1.00) (100)
2
/(2) (32.2) or 155.3 foot-pounds.

If the ball rises until the kinetic energy is zero and the potential energy
is 155.3 foot-pounds, we must set Wh = 155.3 foot-pounds. Since W = 1 00

pound, h = 155.3 feet, which is the distance that the ball will rise.

3-9. Power. Rate of doing work is called power. Whenever
the expression "rate of" is used in physics, division by time is im-

plied. Therefore another way of defining power is to say that it is

the amount of work done divided by the time required to do this

work. Speed, or rate of motion, is similarly distance divided by
time, so that another definition of power is "the product obtained

by multiplying the force that caused the motion by the speed."
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It will be seen that these two definitions are equivalent since

(work) (force) (distance) /e N , 1N

power = )-; ^ = ^
f

'- =
(force) (speed)

(time) (time)

By either method of computing the power the unit will come out

foot-pounds/second. This unit, however, is not large enough to be

very useful, so another unit, equal (very closely in this country and

exactly in England) to 550 foot-pounds per second and called the

horsepower is used in practice. A joule per second is called a watt;

1,000 watts is called a kilowatt. There are exactly 746 watts in a

horsepower in the United States.

3-10. Illustrative Problem. If a 200-pound man runs up a flight of

stairs 20 feet high in seven seconds, at what rate is he working? Express the

result in foot-pounds per second, horsepower, and
watts.

First, find the work done in climbing from one floor
f/ *'-

to the next, which is equal to the potential energy

gained.
Work = Wh = (200 pounds) (20 feet)

= 4,000 foot-pounds

Since the rate of doing this work, that is, the power, is

the work divided by the time, we find the quotient ob-

tained from (4,000 foot-pounds)/(7 seconds) or 571

foot-pounds per second. This is equivalent to 571/550
or 1.037 horsepower or in terms of watts, (1.037) (746) = 774 watts. It is

perfectly possible for a man to work at the rate of a horsepower for a short

time; it is also possible for a horse to work at the rate of many horsepower
for a short time; but it takes a first-class horse to work at the rate of one

horsepower for an entire day.

3-11. Another Illustrative Problem. A horse pulls a plow at the rate

of two feet per second and exerts a forward force on the plow of 250 pounds.
At what rate does the horse work? Express the result in foot-pounds per

second, in horsepower, and in watts. How much work does the horse do

in five hours?

The rate of doing work is the power, one formula for which is the pro-
duct of the force and the speed. Since the force is 250 pounds and the speed
is 2.00 feet/second, the required power is (250 pounds) (2.00 feet/second) or

500 foot-pounds/second. Since there are 550 foot-pounds/second per horse-

power, this power is 500/550 or 0.909 horsepower. It will be noticed that

the numerator together with its units is 500 foot-pounds per second, and the

denominator together with its units is 550 foot-pounds per second per horse-

power, or 550 foot-pounds/horsepower-second. When we divide the

numerator by the denominator, all the units cancel except horsepower,
which being in the denominator of the denominator can be transferred to

the numerator and survives in the result. By multiplying 0.909 horsepower

by the conversion factor 746 watts/horsepower, the horsepower cancels
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giving 678 watts. Since power is the ratio of work to time, it follows that

work is the product of power and time. We may therefore multiply any one

of our three answers by an amount of time corresponding to five hours and

get the work done by the horse. Five hours is 18,000 seconds. When we

multiply 500 foot-pounds/second by 18,000 seconds, the seconds cancel and

we have 9,000,000 foot-pounds. If we multiply 0.909 horsepower by 5.00

hours, we have 4.54 horsepower-hours. If we multiply 678 watts by 5.00

hours, we have 3,390 watt-hours. Since 1,000 watts equals one kilowatt,

this is equivalent to 3.39 kilowatt-hours.

3-12. Units of Energy. If we multiply both sides of the

equation
1 horsepower = 550 foot-pounds/second

by one second, we obtain

1 horsepower-second = 550 foot-pounds

The horsepower-second is thus a unit of energy. Similarly the horse-

power-minute (33,000 foot-pounds) and the horsepower-hour

(1,980,000 foot-pounds), also the watt-hour and the kilowatt-hour

are units of energy. We often use the kilowatt-hour to measure

electrical energy. We have now accumulated so many units of both

energy and power that it will perhaps be well to relate them in

tabular form. So the table will go as follows:

1 joule
= 1 newton-meter

1 joule
= 1 watt-second

3,600 joules
= 1 watt-hour

1,000 watt-hours = 1 kilowatt-hour (kw.-hr.)

0.746 kilowatt-hour == 1 horsepower-hour (hp.-hr.)

550 foot-pounds = 1 horsepower-second

3,600 hp.-seconds = 1 hp.-hr.
0.738 foot-pound = 1 joule

Some other units of energy which we have not yet met may also

be tabulated here for reference.

10,000,000 ergs = 1 joule

1 erg = 1 dyne-centimeter

4,190 joules
= 1 Calorie* (used to measure heat energy)

778 foot-pounds = 1 British thermal unit

3.97 British thermal units = 1 Calorie

It will be noticed that since

energy
=

(power) (time) and

energy = (force) (distance)

*The unit Calorie is sometimes called a kilogram-calorie.
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there are two types of energy units, the watt-hour being an example
of the first, and the foot-pound an example of the second.

3-13. Power Units. A similar table may be constructed with

power units:

1 joule/second = 1 watt

1,000 watts = 1 kilowatt

746 watts = 1 horsepower
550 ft.-lb./sec. = 1 horsepower
33,000 ft.-lb./min. = 1 horsepower

SUMMARY OF CHAPTER 3

Technical Terms Defined

Work. Product of a force by a distance in the same direction as the force.

Energy. Ability to do work.

Power. Rate of doing work, that is, work divided by the time consumed
in doing the work.

Laws

Conservation of Energy. Energy can be neither created nor destroyed.
But it can be passed along from one body to another, or changed from

one form to another with efficiencies ranging from very small values up
to 100 per cent.

PROBLEMS

3-1. How much work is done in winding a church clock if the weight
weighs 50 pounds and has a vertical motion of 30 feet? Express the answer
in foot-pounds, foot-tons, horsepower-seconds, and joules.

3-2. One boy is drawing another on a sled. The tension in each of the

two sled ropes is 10 pounds, the ropes are horizontal, and the distance

covered by the sled is 200 feet. Compute the work done, and express the

result in foot-pounds and in joules. (3.28 feet equal one meter and 4.45

newtons equal a pound.)
3-3. A 200-pound man climbs a flight of stairs which is 50 feet along the

slant and which rises vertically 20 feet. How much work does he do?

3-4. If Niagara Falls is 160 feet high, how much potential energy is

changed into kinetic energy when two pounds of water drop from the top to

within an infinitesimal distance from the bottom? What is the velocity of

the water just before it strikes the bottom? How much heat in British

thermal units is produced when the two pounds of water strike the bottom?

3-5. What is the kinetic energy of a 3,000-pound automobile moving
at the rate of 90 feet per second? What will be the speedometer reading

corresponding to 90 feet per second?

3-6. A mule, walking along the tow-path on the bank of a canal, exerts

a force on a canal boat of 100 pounds. How much work does the mule do
in a mile?
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3-7. If the mule of the previous problem walks at the rate of three miles

per hour, at what rate is work being done? Express the answer in horse-

power and in kilowatts.

3-8. A ISO-pound boy runs up a flight of stairs in six seconds. The
vertical distance between floors is 22 feet and the slant length of the stairs

is 46 feet. At what rate is the boy working?
3-9. A man exerts a force of 200 newtons on the chain of a differential

pulley while pulling 10 meters of rope through his hand. How much work
does he do? If it takes him a minute to do this, find the power in watts,
also in horsepower.

3-10. Assume that the force necessary to move an airplane through the

air is 1,000 pounds when the plane moves at 100 feet per second and doubles

every time the speed doubles. Find the power necessary to drive the plane
at 200 feet per second; at 400 feet per second.



CHAPTER 4

Efficiency; Mechanical Advantage;

Coefficient of Friction; Simple Machines

4-1. Efficiency. A machine is a contrivance that transfers energy
from one body to another. Very few machines are capable of trans-

ferring all the energy received, however, and so it is customary to

refer to that fraction of the energy received by a machine which is

handed on as the efficiency of the machine. Stated mathematically,
the efficiency of a machine is the ratio between the output of a

machine and its input. The output and input may both be considered

as energy handled in a given time or, better, they may both be ex-

pressed as power. The efficiency is a pure number, that is, a number
without units. No machine can be expected to deliver in a given
time more energy than it receives; it does well if it delivers as much

energy as it receives. The only occasion when we have one hundred

per cent efficiency is when the output is in the form of heat energy.

If we could have frictionless processes, they would also result in one

hundred per cent efficiencies. The latter are talked about in physics

courses (for the sake of simplicity) but never realized in practice.

The only case approaching frictionless motion that we know of is that

of heavenly bodies through empty space; the planets apparently
move in their orbits around the sun with practically no friction.

Occasionally one hears of the invention of a perpetual motion ma-

chine. It has already been pointed out (section 3-3) that such

machines are impossible; in the present connection it may be stated

23
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that a perpetual motion machine would be a machine the efficiency

of which is greater than one hundred per cent! To summarize then

^ . power delivered by the machine
efficiency

=
power delivered to the machine

or more simply

efficiency
= -^^ (a)

input

4-2. Mechanical Advantage. It is also convenient to speak
of the force exerted on or by a machine. For example, in the case of

a bicycle, we exert a large force on the pedals, and in turn the bicycle

exerts a comparatively small force on the road. In the case of a

pulley, we exert a small force on the machine and the machine exerts

a large force. But we must remember that these statements rep-

resent only half of the story. The large force on the pedals of the

bicycle is exerted through a small distance, and the small force on

the road is exerted through a large distance; with the pulley it is just

the other way around. The ratio between the force exerted by a

machine, considered frictionless, and the force exerted on the ma-

chine is called the ideal mechanical advantage of the machine. In this

case there is no limit to the value of the ratio; it may be less than one

or it may be greater than one. But in any case it is again a pure
number. In order to save words, engineers agree to call the force

exerted on a machine the effort, and the force exerted by the machine

the resistance. Similarly we call the distance (or displacement)

through which the effort is exerted the effort displacement, and the

corresponding distance for the resistance the resistance displacement.

Therefore the output of a machine in a given time is the product of

the resistance by the resistance displacement. Likewise the input
in the same time interval is the product of the effort by the effort

displacement. Therefore, using equation (a) of the previous section,

\vf* rt^v^
ffi

. _ (resistance) (resistance displacement)

(effort) (effort displacement)

Multiplying both sides of the equation by (effort displacement) and

dividing both sides by (efficiency) (resistance displacement), this

equation becomes

effort displacement resistance

resistance displacement (effort) (efficiency)
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Each of these fractions may be called the ideal mechanical advantage
of the machine. Therefore

effort displacement /M. , , , i j ^
ideal mechanical advantage

j i r i j ^
ideal mechanical advantage =

resistance displacement

resistance

(effort) (efficiency)

If the efficiency
= 1.00 (100 per cent), the last equation reduces to

r i j ^ resistance fA\

mechanical advantage =- W
effort

This ratio of resistance to effort is often called actual mechanical

advantage, regardless of the efficiency, just as equation (b) gives the

ideal mechanical advantage regardless of the efficiency. However
it is the ideal mechanical advantage which is commonly used because

this is the one that depends solely on the dimensions of the machine.

The actual mechanical advantage fluctuates with the condition of

the machine. From here on, if it is not specified which mechanical

advantage is being used, it will be assumed that the ideal is intended.

Most machines have a mechanical advantage greater than one. A
mechanical advantage of less than one is sometimes desired for pur-

poses of convenience, as in the case of tongs, or in situations where

we wish to gain speed at the expense of force, an example of which

is the bicycle.

4-3. Coefficient of Friction. A third ratio (or pure number)
used in mechanics is called coefficient of friction. PYiction is due to

the roughness of two surfaces that are in contact. This roughness,

magnified, becomes miniature hills and valleys in the surface. The
more two surfaces are pressed together, the harder it is to move one

surface over another, because the hills and valleys of one surface

sink farther into the valleys and hills of the other surface. However,
when one surface is moving against the other, the friction is not so

great, because in that case the hilltops of one surface merely ride

over the hilltops of the other surface, and do not have time to sink

into the valleys. The coefficient of friction is the ratio of the force

necessary to pull one surface against friction along the other to the

perpendicular force pressing the two surfaces together. The latter

force is often called the normal force because in mathematics normal

means perpendicular. Therefore

force of friction
coefficient of friction

normal force
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The coefficient of friction may be either greater or less than one. We
also distinguish between the value of the coefficient of friction when

the surfaces are at rest relative to each other, and when they are in

motion. The former is called static coefficient of friction and the

latter kinetic coefficient offriction. As has been indicated, the kinetic

is less than the static coefficient. Wh'en a surface is moved against

friction, heat is produced, and the amount of heat in foot-pounds

may be found by multiplying the force of friction by the distance

moved. The heat may be expressed in either British thermal units

or Calories, the familiar heat units used in dietetics, by using the

facts that
778 foot-pounds = 1 B.t.u.

4180 joules
= 1 Calorie

3.97 B.t.u. = 1 Calorie

When the fraction is computed by using the equation

force of friction = (coefficient of friction) (normal force)

which is another form of the equation occurring earlier in this section,

it is necessary to remember that friction is not an active force; fric-

tion can only oppose an active force. An active force, for instance,

could cause a book lying on a table to start moving. In the absence

of any other forces, friction will not start the book moving, but is to

be subtracted from any force that does tend to move the book. If

there is no active force from which to subtract the friction, we
assume that there is also no frictional force. Or, if the application of

the coefficient of friction formula gives a force greater than the active

force, we use only that part of the friction necessary to neutralize the

active force. Friction always tends to oppose the relative motion

of two surfaces.

4-4. Illustrative Problem. A 100-pound weight is to be dragged four

feet along a floor; the coefficient of kinetic friction is 0.2. What horizontal

force is required and how much energy is converted into heat in the process?
In this case the normal force exerted by the floor on the 100-pound

weight is exactly equal and opposite to the 100-pound pull of gravity on
this weight. Therefore the force of friction is (0.2) (100) or 20 pounds,
which necessitates a 20-pound horizontal force to keep the weight moving
along the floor once it is started. The heat that is produced is the product
of this 20 pounds by the four feet, that is, 80 foot-pounds. Converted into

British thermal units, we have 80/778 or 0.1028 B.t.u. or 0.0259 Calorie.

4-5. Simple Machines; Compound Machines. In a few
of the sections following, certain simple machines are discussed, such
as the lever, pulley, inclined plane, screw, wheel and axle, and hy-



4-6] EFFICIENCY; MECHANICAL ADVANTAGE; SIMPLE MACHINES 27

xiraulic press. There are others, such as the wedge, which we are not

yet ready to discuss. Most actual machines represent combinations

of simple machines; such a combination is called a compound ma-

chine. Bicycles and derricks are examples of

compound machines. The mechanical advantage
of a compound machine is the product of the me-

chanical advantages of its constituent parts. The
mechanical advantage of the compound machine

also may be found directly from its resistance

and effort or their displacements.

4-6. The Lever. A lever is a rigid bar upon which, in the

simplest case, only three forces act, each one perpendicular to the

bar. Two of these forces are the effort, usually

small, and the resistance, usually large. The
third force acts at the axis, which is called the

fulcrum, and which may be either at the end of

the bar or somewhere between the ends, but

usually nearer to the point of application of the

resistance. One type of lever is diagrammed
in figure 4-1, where the third force is not shown,
but if it were, the force would be applied upward at the axis and

would be equal in magnitude to the sum of both effort and resistance.

DISPLACEMENT

Figure 4-1.

By applying the geometrical theorem concerning the propor-

tionality of corresponding sides of similar triangles, we see from

figure 4-1 that

effort displacement __ effort arm

resistance displacement resistance arm

It therefore follows from equation (b) of section 4-2 that

effort arm
ideal mechanical advantage of lever =

resistance arm
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4-7. The Pulley. In figure 4-2, in order to raise the lower

block one foot, it is necessary to exert the force E (the effort) through
a distance of four feet. By section 4-2, equa-
tion (b), the mechanical advantage is the ratio

of the effort displacement to the resistance

displacement, which in this case is 4/1 or 4.

It will be observed that in order to find the

mechanical advantage of a pulley of this

simple type, it is only necessary to count the

number of ropes against which the resistance

pulls. In more complicated pulley arrange-

ments, where some of the ropes have twice or

three times the tensions of others, it is neces-

sary to fall back on the more general relation,

equation (b).

4-8. The Inclined Plane. In such oper-

ations as putting a box into a truck, an in-

clined plane furnishes a convenient means for

raising a given weight by exerting a force con-

siderably less than the weight. Let an in-

clined plane of length s make an angle with

the horizontal,

and let us as-

sume that the

problem is to raise the weight W (fig-

ure 4-3) a vertical distance h by

exerting a force E which is less than

W (which will now be called R,
the resistance). R is a force acting Figure 4-3.

vertically downward.
We shall find the mechanical advantage of the inclined plane

from a consideration of the law of conservation of energy, assuming
no friction. The potential energy gained by raising the level of W
pounds h feet is Wh foot-pounds. If this energy is obtained by doing
the work represented by exerting the force Epounds through the dis-

tance of s feet, then Es foot-pounds should equal Wh or Rh foot-

pounds. Therefore the ideal mechanical advantage is R/E=s/h;
that is, the

ideal mechanical advantage of inclined plane = r

or, stated in words, the ideal mechanical advantage equals the ratio
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of the length of the plane to the vertical height of one end of the

plane with respect to the other end.

4-9. Problems Illustrating Inclined Plane. A 1,000-pound block is

pulled up a rough inclined plane by a force of 925 pounds. The plane rises

50 feet in a slant height of 100 feet. The block starts from rest at the bottom

and has acquired a speed of 17.94 feet per second by the time it arrives at

the top. Find (1) the mechanical advantage of the plane, (2) the work done

by the 925-pound force, (3) the gain in potential energy from the bottom of

the plane to the top, (4) the gain in kinetic energy, (5) the part of the work

that goes into heat, and (6) the force of friction. (7) If the normal force is

866 pounds, find the coefficient of friction.

(1) The mechanical advantage of the plane is 100 ft./50 ft., or 2.

(2) The work done by the 925-pound force is the product of 925 pounds

by 100 feet, since the two are parallel. The product is 92,500 foot-pounds.

(3) The gain in potential energy is Wh, the product of the weight of the

block and the vertical height through which it rises. Notice that the weight

(a vertical force) and the height are parallel with each other. Numerically,

therefore, the gain in potential energy is (1,000 pounds) (50 feet) or 50,000

foot-pounds.

(4) At the bottom of the incline, the kinetic energy was zero since the

block was at rest there. At the top, the kinetic energy is by section 3-6

equal to Wv*/2g; we may write the equation

kinetic energy =
' ^

' = 5,000 foot-pounds

(5) The total work, 92,500 foot-pounds, accounts for three things, the

gain in potential energy of 50,000 foot-pounds, the gain in kinetic energy of

5,000 foot-pounds, and the heat developed. By subtraction, therefore, we
find that 37,500 foot-pounds of heat are developed.

(6) Since the heat is the product of the force of friction and the slant

height of the plane, the force of friction is the quotient of 37,500 foot-pounds
and 100 feet, or 375 pounds.

(7) The coefficient of friction is the quotient of the force of friction,

375 pounds, and the normal force, 866 pounds, or 0.433.

4-10. The Jackscrew. Figure 4-4 represents a jackscrew.

Let the effort be applied through one whole circumference of the

dotted circle of radius r. The effort displacement is therefore

2 IT r. The corresponding resistance displacement is called the

pitch of the screw and may be represented by p. It is the vertical

distance that the weight rises when the screw is turned through an

angle of 360 degrees. The mechanical advantage is, then, by section

4-2, equation (b), given by the expression

ideal mechanical advantage of jackscrew = T
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The efficiency of a jackscrew is fairly low; more than half of the

work is done against friction. As a matter of fact, it would be in-

convenient to have the efficiency of a

jackscrew greater than fifty per cent;

this would mean that when the effort

dropped to zero, the weight of the load

y t^^-zz^^") would turn the screw back down again."
One may think of the jackscrew as a

modification of the inclined plane in

which the "plane" has been twisted in-

to a helix.

4-11. Illustrative Problem. (1) A jack-
screw has four threads per inch, and an

efficiency of 25 per cent. How great a weight
can the jack lift when a force of 100 pounds
is exerted at the end of a two-foot bar in

order to turn the screw? (2) What force

must be applied at the end of the two-foot

Figure 4-4. bar in order to let the same weight back

down again with the same jack?

(a) Use the equation, efficiency equals output divided by input. The

efficiency is 0.25. The input is the effort, 100 pounds, multiplied by the

effort displacement, (2) (TT) (24 inches). The output is the product of

the resistance, W pounds, by the resistance displacement, 0.25 inch. 0.25

inch is the pitch of the screw, since there are four threads to the inch. With
these values substituted, the equation becomes

0.25 = 0.25 W
(2 T) (24) (100)

The efficiency is a pure number; both output and input are in inch-pounds.
Divide both sides of the equation by 0.25 and multiply both sides by
4,800 ir, and the equation becomes 4,800 TT = W, or W = 15,070 pounds.
It will be noticed that during this one revolution the input is 15,070

inch-pounds, the output is 3,700 inch-pounds, and 11,300 inch-pounds
of heat are developed. The difference between input and output is

practically always heat.

(b) When we let the weight back down again, there is no output except

heat, and when heat is the only output, a process is always 100 per cent

efficient. The output is now 11,300 inch-pounds of heat, and the input is

the sum of 3,770 inch-pounds recovered from the load together with the

work done by exerting an unknown force, F, through a distance of (2 TT) (24)
inches. The efficiency equation therefore becomes

1.00
11,300

3,770+(2)(24)(/9
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Clear of fractions by multiplying both sides of the equation by the denomi-

nator of the right-hand side

3,770+ 150.7 F = 11,300

Subtracting 3,770 from both sides of this equation, which is called "trans-

posing the 3,770," we have

150.7 F = 7,530

Dividing both sides of the equation by 150.7 gives

F = 50.0 pounds, answer

The method employed in solving this problem is typical of a large num-
ber of physics problems. In general the successive steps are (1) recognition
of the physical principle involved and the selection of an equation em-

bodying this principle, (2) substitution of the numerical values of the

problem into the equation, leaving the unknown values represented by
letters, and (3) algebraic manipulation in order to solve for the unknown

quantities.
It is very important to make sure that the physical quantities are ex-

pressed in the proper units. When the units are correct, they may be

introduced into the equation along with the numerical values, and it will

then be found that the units completely cancel.

4-12. Problem Illustrating "Wheel And Axle." The wheel of a "wheel

and axle," figure 4-5, has a radius of two feet and the axle, a diameter of six

inches. Assuming no friction, compute the force which must be applied to

the rim of the wheel in order to lift a 400-pound
weight by means of a rope wrapped around the

axle. What is the mechanical advantage?
If the wheel is turned through one complete

revolution, the unknown force on the rim (the

effort E) acts through a distance of (27r) (2)

feet, the circumference of the wheel: this is the

effort displacement. At the same time the

resistance, 400 pounds, is lifted a distance of

(27r) (0.25) feet, the circumference of the axle:

this is the resistance displacement. The ideal

mechanical advantage may be found immedi-

ately by dividing the effort displacement by
the resistance displacement and obtaining 8. FAS
Since in this case we are assuming no friction,

IQure

the efficiency is 100 per cent and the ideal

mechanical advantage is also equal to the resistance divided by the effort.

Therefore
400

8 =
E

and solving for E, we obtain 50 pounds for the effort.
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4-13. The Hydraulic Press. The hydraulic press consists of

two hollow cylinders of different diameters and therefore different

cross-sectional areas, a and A, connected by means of a tube (see

figure 4-6). Each cylinder is equipped
with a tightly fitting piston, and the

whole is filled with some liquid. A
small force

,
exerted through the dis-

tance n, results in the exertion of a

large force 2?, exerted through the

small distance m. Levers are also used

in practice to increase further the me-

chanical advantage but will not be

included in this discussion.

By section 4-2, equation (b), the

mechanical advantage is equal to n/m.
The volume of the liquid na, which

leaves the small cylinder is nec-

essarily equal to the volume of

liquid mA, which enters the large cylinder. Therefore n/m = A/a,

another expression for the mechanical advantage.
4-14. Pressure. In section 3-4, the first illustration of energy

(1) could be termed pressure energy. Pressure may be defined as the

ratio of a force exerted at right angles to the surface of a fluid to the

area of the fluid upon which the force is acting.

force
pressure =

Figure 4-6.

area

that is, pressure is force per unit area. The unit of pressure is of the

form, pounds per square foot, pounds per square inch, or newtons

per square meter. It should be emphasized that the force is per-

pendicular to the area and directed toward the area. We shall see

eventually that pressure is a special case of a "stress."

4-15. Pressure Energy. When a fluid is compressed, we may
state with sufficient accuracy for our purpose that the pressure

energy stored by the process is equal to the product of the pressure

and the decrease in volume. If the pressure is expressed in pounds

per square foot and the volume in cubic feet, the energy will come
out in foot-pounds. Consider the following example : a tightly fitting

piston moves a distance of d feet into a cylinder of cross section A
square feet against a constant pressure of p pounds per square foot.

The force necessary to do this is therefore pA pounds, and since this

force is parallel to the distance d, work will be done by the force
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equal to pAd foot-pounds. But the volume V moved through by
the piston is the cross section A times the distance d. Therefore the

energy put into the fluid is pV foot-pounds.

Pressure energy = pV

The hydraulic press affords another illustration of pressure and

pressure energy. The area of one of the pistons, multiplied by the

pressure in the liquid, will equal the force exerted by the liquid on

that piston, and also, by Newton's third law, will equal the force

exerted by the piston on the liquid. That is, force equals pressure
times area. The pressure throughout the liquid has practically a

constant value; therefore, disregarding friction, the forces on the two

pistons are proportional to the cross-sectional area of the pistons.

The smaller force may be taken as the effort (, figure 4-6) and the

larger as the resistance J?, and the

mechanical advantage = -= =
rL a

where A and a are the areas of the two pistons.

This relation may also be obtained from the energy point of

view, still considering the machine frictionless. If n and m are the

effort displacement and the resistance displacement respectively,

then Rm is the output and En the input energy; these energies

could be written in terms of pressures and volumes by putting areas

in both numerators and denominators, that is

Therefore Rm = En, since the efficiency is one hundred per cent.

If we divide Rm = En by mA =
na, we obtain R/A = E/a which

may be rewritten R/E = A/a.

SUMMARY OF CHAPTER 4

Technical Terms Defined

Simple Machine. A device for transferring energy.

Compound Machine. A combination of two or more simple machines.

Input. Rate of doing work on a machine.

Output. Rate at which a machine does work.

Efficiency. Ratio of output to input, usually expressed in percentage..

Effort. Force exerted on a machine.

Resistance. Force exerted by a machine.
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Effort Displacement. An arbitrary distance through which the effort is

exerted.

Resistance Displacement. The corresponding distance through which the

resistance is exerted.

Ideal Mechanical Advantage. Ratio of effort displacement to resistance

displacement.

Actual Mechanical Advantage. Ratio of resistance to effort. The me-

chanical advantage of a compound machine is the product of the mechani-

cal advantages of its parts.

Normal Force. A force perpendicular to the surface of contact exerted

by one object upon another object which rests or slides upon the first.

Coefficient of Friction. Ratio of force of friction to normal force; called

"static coefficient of friction" when surfaces are at rest and "kinetic

coefficient of friction" when in relative motion.

Pressure. Ratio of force to area; force must be normal to area and
directed toward it.

Pressure Energy. Product of pressuie by change of volume produced by
the pressure.

Laws

Heat may be changed to other forms of energy at low efficiencies.

Other forms of energy may be converted into heat with one hundred

per cent efficiency.

The difference between input and output is rate of production of heat,

except when the output itself is rate of production of heat.

Displacement multiplied by force of friction is heat energy.

PROBLEMS

4-1. Find the force of friction between sled and snow if the sled and
load weigh 100 pounds and the coefficient of friction is 0.1. How much work
will be done in pulling the sled 50 feet with the rope horizontal? What
becomes of this work?

4-2. Show that in the case of a windlass, the mechanical advantage is

R/r, where R is the length of the crank and r is the radius of the axle on
which the rope is wound.

4-3. A man weighing 180 pounds is lowered into a well by means of a

windlass, the arm of which is 30 inches long and the axle of which is 6 inches
in diameter. Assuming no friction, find the force required to let him down
with uniform speed.

4-4. What horsepower is necessary to run a 700-watt generator, the

efficiency of which is 90 per cent?

4-5. What wattage is necessary to drive a one-horsepower motor, the

efficiency of which is 80 per cent?

4-6. State the data necessary to determine the mechanical advantage
of a bicycle (1) if one is to be restricted to an examination of the bicycle
itself; (2) if one is allowed to experiment with the bicycle on the road.
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4-7. A jackscrew with four threads to the inch, lifting a weight of 10,000
pounds, is turned by a capstan rod, and the force required to turn the screw
is 100 pounds, the lever arm being 18 inches. Find the efficiency.

4-8. Prove that a jackscrew, the efficiency of which is 50 per cent,

requires no force to let the load back down after being raised.

4-9. An automobile is stuck in the mud. Given: a horse, a long rope,
a pair of triple pulleys, and a tree growing at a convenient spot. Show
how to rig the pulleys so as to obtain the maximum mechanical advantage.
If the efficiency of the pulleys is 50 per cent

and the horse can exert a pull of 700 pounds,
what pull can be exerted on the car?

4-10. The wheel of a "wheel and axle"

has a radius of two feet and the axle a

diameter of six inches. Assuming that 25

per cent of the applied force is necessary to

overcome friction, compute the force which
must be applied to the rim of the wheel in

order to lift a 400-pound weight by means
of a cord wrapped around the axle. What
is (1) the mechanical advantage; (2) the

efficiency?

4-1 1. In figure 4-7, which illustrates a

differential pulley (sometimes called a chain

hoist or chain fall), the two upper pulleys

(radii r and r z respectively) turn together.
Show that the ideal mechanical advantage

is ? Does the radius of the lower
r2 n

wheel affect the mechanical advantage?
4-12. A differential chain hoist has one

wheel nine inches in diameter and the other

ten inches. If the efficiency is 40 per cent, Figure 4-7.

how large a force on the chain is necessary
to lift a one-ton load? What is the largest efficiency that the chain hoist

may have without dropping back when the effort is removed?



CHAPTER 5

Fluids

5-1. Boyle's Law. Liquids and gases are both fluids; neither of

them has a fixed shape, but both take the shape of the container.

The distinction between a liquid and a gas is that a liquid has a

definite volume, and therefore a free surface, and stays in the bottom

of the receptacle, whereas a gas occupies the whole volume of the

container. For this reason the expression "volume of a gas" means

no more than the volume of the container. The pressure exerted by
the walls of the container on a gas may be computed if we know the

weight and temperature of the gas, and the volume of the container.

If the mass and temperature of a gas remain constant, decreasing

the volume of a gas increases its pressure in accordance with the

equation
v p*
V2 Pi

where PI and V\ represent the original pressure and volume and P2

and F2 ,
the new values. It will be noticed that P\V\ = P^V^ ex-

presses the same mathematical fact more concisely; still another

way is to say that the product of the pressure and the volume is

constant. This relation goes under the name of Boyle's law. The

pressure here is the total pressure, not the excess over and above

atmospheric pressure, which generally goes under the term "gage

pressure."
5-2. Density and Specific Gravity. The conceptions ofden-

sity and specific gravity are particularly useful in dealing with fluids.

36
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The density (sometimes called weight density to distinguish it from

mass density, a term often used in theoretical physics) of a substance

is determined by dividing its weight by its volume. That is

, . weight
density = r2

volume

A typical unit of density will therefore be lb./ft
3 Since 62 .4

pounds of water has a volume of one cubic foot, and one gram (one

thousandth of a kilogram) of water has a volume of one cubic centi-

meter, it follows that the density of water in two common systems of

units is 62.4 pounds per cubic foot, and one gram per cubic centimeter.

(The mass density in the standard kilogram-meter system of units

is 1,000 kilograms per cubic meter.) Specific gravity is the ratio of the

i density of the substance under consideration to

)
the density of water. Both densities must be

expressed in the same units before dividing. This

means that specific gravity itself is a pure num-

ber; it has no units. For this reason the specific

gravity of a substance will be the same in one

system as it is in any other. Specific gravity may
also be defined as the ratio of the weight of a

given volume of that substance to the weight of

an equal volume of water. Since specific gravity

is the ratio of two weights, it will still come out a

pure number.

5-3. Pascal's Principle. In section 4-15, it

was assumed that increasing the pressure under

the smaller piston of a hydraulic press had the

effect of increasing the pressure by the same amount under the

larger piston. This is, in fact, the case. We may make this state-

ment more general as follows: when a fluid (gas or liquid) is confined

within a given volume, an increase in the pressure of any part of the

fluid will result in the same increase of pressure everywhere else in

the fluid. This is Pascal's principle. It is often illustrated on the

lecture table by the so-called Cartesian divers. They are weighted
to have about the density of water. If the pressure is increased in

any part of the apparatus, as at A (figure 5-1), the air inside the

divers is compressed, water enters, and both divers become heavier

and sink simultaneously.
5-4. Hydrostatic Pressure. The concept of density becomes

useful when we are given the volume of a substance and wish to know
its weight; the weight will be the product of the volume and the

Figure 5-1.
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density. As an illustration of this use of density, let us compute the

pressure at the bottom of a rectangular tank filled with some liquid.

Let the density of the liquid be Z>, the horizontal cross section of the

tank A, and the height of the liquid above the point in question (the

bottom of the tank) h. The volume of the liquid in the tank is there-

fore A h, and the weight of the liquid DAh. The weight is the force

exerted on the bottom of the tank. Since the pressure on the bottom

is the ratio of the force to the area, the pressure in this case is DAh/A
or hD. That is, the area cancels out, leaving the pressure a function

of the density and depth of liquid only.

P = hD

In other words, at a given depth in a liquid there will be a given pres-

sure, everywhere the same at this level. If there is already a pressure

at the upper surface of the liquid, this pressure must be added to

hD to get the total pressure. When a force is the product of a pres-

sure by the area over which the pressure is distributed, the force is

always at right angles to the area and pushing toward it. This means

that if we had a vertical surface in the liquid we could still use the

formula we have just derived (P = hD) to compute the pressure;

after that, to compute the horizontal force on a given vertical area,

the necessary formula would be F = PA, which we have met before.

The pressure is computed for the center of the area in question.

5-5. First Illustrative Problem. If the volume of an air bubble is 10

cubic centimeters when 34 feet below the surface of a pond, what will the

volume be just below the surface?

The pressure on the air bubble just below the surface is one atmosphere
or 14.7 pounds/square inch. The pressure 34 feet below the surface will be

more than one atmosphere by hD, where h is 34 feet and D is the density of

water, 62.4 pounds/cubic foot. The additional pressure is therefore (34)

(62.4) or 2,120 pounds per square foot. In accordance with slide-rule pre-

cision, this number has been rounded off to three significant figures. Since

there are 144 square inches in a square foot, this additional pressure is the

same as 2,120/144 or 14.7 pounds per square inch, making a total pressure
at a depth of 34 feet of 29.4 pounds per square inch.

Assuming that the temperature is the same in both places, Boyle's law

holds, or, P\V\ = P<zVi. In this case PI is 29.4 pounds per square inch, V\
is 10 cubic centimeters, P% is 14.7 pounds per square inch, and 2 is un-

known. Therefore

(29.4) (10) = (14.7) (F2)

Dividing both sides by 14.7, we obtain 2 = 20 cubic centimeters. That is,

when the pressure is halved, the volume is doubled.

5-6. Second Illustrative Problem. A tank is three feet wide, four feet

deep, and six feet long. If it is filled with water, find the average pressure
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on one side and on one end in pounds per square foot, also find the force on
one side and on one end, in pounds.

The center of one side, also the center of one end, is two feet from the

top. Two feet is therefore the value of A. Since the fluid is water, the den-

sity is 62.4 lb./ft.
3 Therefore the average pressure for the side is the same

as the average pressure for the end, and both are equal to (2 ft.) (62.4

lb./ft.
3
) which is 124.8 lb./ft.

2 Notice the cancellation of the feet. The
force on one end is PA, in this case (124.8 lb./ft.

2
) (12 ft.2) or 1,498 pounds.

Similarly the force on a side is (124.8 lb./ft.
2
) (24 ft.2) or 3,000 pounds.

5-7. Third Illustrative Problem. As a third illustration of this type of

problem, imagine a brick suspended by a wire below the surface of a liquid
the density of which is 1.5 gm./cm.3 Let the dimensions of the brick be 5

by 10 by 20 cm., and let the 10 by 20 side be on top and immersed 30 cm.

below the surface of the liquid. Find the forces exerted by the fluid on all

six surfaces of the brick.

We can name these surfaces top, bottom, sides, and ends. The values of

A for these surfaces are 30 cm. for the top, 35 cm. for the bottom, and 32.5

cm. for the sides and ends. Therefore the pressures will be 45 gm./cm.2 for

the top, 52.5 gm./cm.
2 for the bottom, and 48.8 gm./cm.2 for the sides and

ends, since the density of the fluid is 1.5 gm./cm.3 The forces will be 9,000

grams down on the top, 10,500 grams up on the bottom, two horizontal

forces of 2,440 grams each (in opposite directions), one on each end, and
two forces of 4,880 grams each, one on each side, these numbers being found

by multiplying each pressure by the appropriate area. This solves the

problem, but let us continue and find the total force on the whole brick.

The forces on the ends cancel each other, likewise the forces on the sides,

but the top and bottom forces add (algebraically) to 1,500 grams, upward.
This means that the liquid actually pushes up on the brick with a force of

1,500 grams, which is, incidentally, exactly the weight of the liquid that

could be contained in the volume of the brick.

5-8. Buoyant Force; Archimedes' Principle. Let us now
consider whether the agreement mentioned in the previous sentence

is a coincidence or not. Imagine the vessel that contains the liquid,

discussed in the previous section, before the brick has been suspended
in the fluid. The space later to be occupied by the brick is at that

time filled with 1,500 grams of liquid. This 1,500 grams of liquid is

at rest; it has a tendency neither to rise nor fall. The only way in

which to account for this is to assume that the surrounding liquid is

supporting it by exerting upon it an upward force of just 1,500 grams.
This is known as a buoyant force. And it will be exerted by the sur-

rounding fluid on whatever material occupies that particular 1,000

cubic centimeters of space. Therefore it was no coincidence when we
found at the end of the previous section that the upward force of the

liquid on the brick was 1,500 grams. This general fact is known as

Archimedes' principle and may be stated as follows : a body immersed
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in a fluid experiences an upward force exerted by the surrounding
fluid and equal to the weight of the fluid displaced by the body. If

the buoyant force is greater than the weight of the object, the object
will rise, as in the case of a balloon, or a stick

of wood placed under water. In the latter in-

stance, a portion of the wood will finally rise

above the surface of the water, after which the

wood will displace less water, until the weight
of the water displaced is

equal to the weight of the

piece of wood. The floating

piece of wood will then be in equilibrium. Archi-

medes' principle holds just as rigorously for a .-*^_

floating as for a submerged object. ""^
5-9. Determination of Specific Gravity.

A little consideration will show that Archimedes' principle furnishes

a direct method of determining the specific

gravity of a body. P'or this purpose, we
need to know both the weight of the body^ . and the weight of an equal volume of water.

_d .&< "'* But this "weight of an equal volume of
"
?

-:
CJ^^^ water" is simply the buoyant force when

the object is immersed in water. It may
readily be found by subtracting the weight of the object when it is

supported under water from its weight in air, because (figure 5-2)
the sum of the two upward forces B and F
must equal the downward force W in

order to maintain equilibrium. W is the

weight in air, B is the buoyant force, and

F, the additional force needed for equilib-

rium, is called the "weight in water." If

the density of the object is less than that

of water, a modification of this method is

necessary. A sinker, attached to the ob-

ject, is kept under water while the object

is weighed both in air and in water. Thus

the difference between the two weights still

gives the buoyant force on the given object.

5-10. Illustrative Problem. A block of wood weighs 200 grams. A
sinker is fastened to it, and when the sinker is below the surface of water

with the wood above the surface, the two together weigh 500 grams. If
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both are below the surface, the combination weighs 150 grams. Find the

volume and the specific gravity of the block of wood.

When only the sinker is submerged, the upward force necessary for

equilibrium is 500 grams. When both block and sinker are submerged, the

necessary upward force is only 150 grams, 350 grams less. This means that

in the second case the buoyant force is 350 grams more. In the first position
the wood is out of water and in the second position the wood is under water,
therefore the 350 grams represents the buoyant force of the water on the

wood, and by Archimedes' principle, is the weight of the water displaced by
the wood. Since one gram of water occupies one cubic centimeter, the vol-

ume occupied by the wood is 350 cubic centimeters.

The specific gravity of the wood is the ratio of the weight of the wood to

the weight of an equal volume of water. The weight of the wood is 200

grams and the weight of the same volume of water is 350 grams, therefore

the specific gravity is (200 grams)/(350 grams) or 0.571, a number with-

out units.

If the density had been required, it would have been necessary to find

the quotient, (200 grams)/(350 cubic centimeters), and the result would

have been 0.571 gram/cubic centimeter.

5-11. Bernoulli's Principle. The discussion has so far con-

cerned fluids at rest; if we let the fluids move, there will be deviations

from the laws already stated. For instance, in a fluid at lest, the

force on a unit area at a certain depth has the same numerical value

no matter whether the unit area be vertical, horizontal, or slanted.

But if the fluid is in motion, this force will depend on the direction

of the motion. Moreover, let us consider the relations involved

when a frictionless, incompressible liquid flows without any eddying
motion through the pipe shown in figure 5-3. The potential energies

of small quantities of water at B, C, and D are all equal and less than

Figure 5-3.

the potential energy at A, because B, C, and D are all on the same

level and A is at a higher level. The velocities at ^4, J5, and D are

equal and greater than at C because the pipe has the same cross

section at -4, B, and Z), and a larger one at C; therefore the kinetic

energies are greater at A, B, and D than at C. The pressure energies

at B and D are equal and greater than at A
y
because the lower down

a fluid, other things being equal, the greater the pressure. But other
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things are not equal at C. Since the kinetic energy at C is small,

some other energy must be greater there to compensate. Since this

cannot be the potential energy, it must be the pressure energy. A
statement of this fact is known as Bernoulli's principle, and is as

follows: when the velocity of an enclosed moving fluid changes, the

pressure changes in the other direction in such a way as to keep the

total energy per unit volume constant.

5-12. Illustrations of Bernoulli's Principle. Some peculiar

experiments illustrating Bernoulli's principle can be performed. As

one example, push a common pin through a card, and hold the card

against the hole in a spool so that the pin enters the hole. The
card can naturally be held- against the spool by drawing air through

the hole in the spool from the opposite end be-

cause of the low pressure of the air as it moves

rapidly between the card and spool. But for

the same reason, the card can also be held in

place nearly as well by blowing air through the

hole toward the card. Another illustration is

that of a light ball riding on an air jet. (See

figure 5-4). Three forces act on the ball: A, B,
and W the weight. The forces A and B are due

to air pressures. B is greater than A because the

speed of the air on that side is less than on the

side where A is. Therefore, in whatever way the

ball starts to fall out of the jet, the action of the

forces will be such as to push the ball back up
into the jet. The suction between two ships moving parallel to each

other, the curving of baseballs, the Venturi meter, and the hydraulic
suction pump (or aspirator) so commonly used in laboratories are

all illustrations of Bernoulli's principle.

SUMMARY OF CHAPTER 5

Technical Terms Defined

Fluid. A state of matter such that it conforms to the shape of the con-

tainer; includes liquids and gases.

Liquid. A fluid with a definite volume.

Gas. A fluid which tends to expand indefinitely.

Weight Density. Ratio of weight to volume.

Specific Gravity. Ratio of the density of substance under consideration to

the density of water, or ratio of the weight of a given volume of a sub-

stance to the weight of an equal volume of water.

Figure 5-4.
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Derived Relations. Increase of hydrostatic pressure with increase in depth
is equal to the product of the average density of the fluid by the increase

in depth.
Laws

Boyle's Law. Given a definite quantity of gas by weight, at a definite

temperature, the product of its total pressure and the volume of its con-

tainer will be a constant.

Pascal's Principle. A local increase in pressure is transmitted to all parts
of an enclosed fluid.

Archimedes' Principle. A body immersed in a fluid experiences an up-
ward force (buoyant force) exerted by the surrounding fluid and equal
to the weight of fluid displaced by the body.

Bernoulli's Principle. At a given level of a moving fluid, changes of ve-

locity are accompanied by compensating changes of pressure in such a

way as to keep the total energy constant in a given volume.

PROBLEMS

5-1. If 2 cubic feet of sulphur weigh 250 pounds, compute (1) the den-

sity in English units, (2) the specific gravity, and (3) the density in grams
per cubic centimeter.

5-2. Find the excess above atmospheric pressure 50 feet

below the surface of a pond in pounds per square foot; in

pounds per square inch.

5-3. A cubical tank, six feet on each edge, is half full of

water. The upper half contains oil of specific gravity 0.8.

Find the excess of the force exerted by the water on the lower

half of one side of the tank, over what it would be if the tank
were filled with air.

5-4. Figure 5-5 represents a vertical tube open at the

bottom and closed at the top. Tt was originally filled with

mercury (density = 13.59 gm./cm.3
), the end closed with the

thumb and inverted into another dish of mercury. Some of

the mercury ran out when the thumb was removed, leaving a

vacuum above A. The pressure at A is therefore zero. (1) If

B is 38.0 centimeters below A, find the pressure at B. (2) Find
the pressure at C, 76.0 centimeters below A. (3) If C and D are Figure 5-5.

on the same level, how do their pressures compare? (4) Express
the pressure at D in pounds per square inch. (5) If a small hole were made
in the tube at J5, would mercury run out or air go in? This apparatus
(without the hole at B) is called a mercury barometer and is used to measure

atmospheric pressure.

5-5. Figure 5-6 represents a vessel containing water into which a tube,
also full of water, dips. The tube is closed at the lower end. Compare the

pressures at points A, B, and D, all on the same level. Compare qualita-

tively the pressures at points C, D, and E. If the lower end of the tube is

opened, will air enter the tube or will water run out? A tube used in this

way is called a siphon. Why will it not work when the vertical distance

from B to C is such that the difference in pressure between these two points
is greater than one atmosphere?
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5-6. A rock weighs 250 pounds in air and
150 pounds in water. Find its specific gravity and
its density.

5-7. What force must be exerted on a force-

pump piston that is three inches in diameter to

raise water 100 feet?

5-8. The specific gravity of iron is 7.6. A
hollow piece of iron weighs six grams in air and
four grams in water. What is the volume of the

cavity in the iron?

5-9. A sinker weighing 38 grams is fastened

to a cork weighing 10 grams, and the two together
are in equilibrium when immersed in water. Find
the specific gravity of the sinker if that of the

cork is 0.25.

5-10. A dam is 10 feet in height and 100 feet

long. If the water level is even with the top of the

dam, find the thrust of the water against the dam.

5-11. A horizontal water pipe two square inches in cross section widens
out to four square inches in cross section. If the speed of the water is six

feet per second in the narrower part, what is the speed in the wider part?
If the gage pressure in the narrower part of the pipe is five pounds per

square inch, what is the gage pressure in the wider part?

Figure 5-6.



CHAPTER 6

Elasticity

6-1. Elasticity. In everyday life the concept of elasticity is prob-

ably more definitely associated with rubber than with any other sub-

stance. But when we use the word in its technical sense, we are

obliged to admit that rubber is elastic not because it can be stretched

so far, but because after being stretched, it has a tendency to return

to its original dimensions. Elasticity is the tendency of a body after

being deformed to return to its original dimensions. In order to

discuss elasticity intelligibly, we must become familiar with the use

of two more technical terms: stress and strain.

6-2. Stress. Stress is the ratio between a force and an area

over which the force is applied. We shall discuss three types of

stress. The force may be perpendicular to the area or in the plane of

the area. If the force is perpendicular to the area, it may push on

the area or pull on the area. We have already met the case where

the force pushes perpendicularly on the area, and have called this

type of stress pressure (see section 4-15). When the force pulls on

the area, we have a tensile stress, and its tendency is always to

lengthen the wire or whatever object the force is acting upon. If the

force is exerted in the plane of the given area, it gives rise to what is

known as a shearing stress. In all three cases, the unit of stress is the

45
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pound per square inch, the newton per square inch, the newton per

square meter, or some similar unit.

force
stress =

area

6-3. Strain. A strain has no units; it is always a pure number.

Each type of stress produces its own type of strain, or deformation.

A pressure tends to decrease the volume of

the object on which the pressure is applied;
and the numerical measure of the volume

strain is the ratio of the decrease in volume

to the original volume.

volume strain =
decrease in volume

v_

~Voriginal volume

Since a tensile stress tends to increase the

length, the accompanying strain is the ratio of the increase in length
to the original length.

., . increase in length e
tensile strain = r-. ri 1 = T

original length L

A shearing stress tends to distort a cube into a solid figure having
two rhomboid, two oblong, and two square faces. A reference to

figures 6-1 arid 6-2 shows the nature of the change in shape. For

example, imagine a force exerted on the cover of a thick book,

parallel to the direction of a line of reading matter on the cover.

-P

Figure 6-1. Figure 6-2.

The result is to change the shape but not the volume of the book.

The shearing strain is the ratio of x to y in figure 6-2.

It is thus roughly proportional to the angle with vertex at Q.

In all three of these cases, if the substance is elastic, the strain

disappears when the stress is removed, and the object resumes its

original shape and size.
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6-4. Modulus of Elasticity. It is possible to produce a unit

strain in a rubber band; that is, the stretch may be made equal to

the original length. The stress necessary to produce this unit strain

is the numerical measure of the elasticity of the rubber band; stress

is also the force per unit cross section with which the rubber band
resists the stretching and tries to return to its original dimensions.

Half of this stress would be enough to produce a strain of 0.5. In

general the stress and the strain are proportional, so that the elas-

ticity may also be obtained by dividing the existing stress by the

accompanying strain. This is fortunate because rubber is nearly the

only substance the elasticity of which could be determined by
measuring the stress necessary to produce unit strain, although it is

possible in the case of any substance to measure a given stress and

the corresponding strain and obtain the ratio. The ratio of the stress

to the strain is the modulus of elasticity.

11 r i 4-
stress

modulus of elasticity = r-
strain

The numerical value of a modulus of elasticity is always very large.

Any fraction may be increased by increasing its numerator or by
decreasing its denominator. Therefore, since stresses (in the num-
erator of the modulus) are large, and corresponding strains (in the

denominator of the modulus) are small, we are not surprised to find,

for example, that the stretch modulus (called Young's modulus} for

steel is in the neighborhood of 30,000,000 pounds per square inch.

6-5. Hooke's Law. In the preceding section the statement

was made that in general, stress and strain arc proportional. This

fact is known as Hooke's law, and is true providing the stress does

not become too great. If the stress does become too great for Hooke's

law to hold, we say that the elastic limit has been exceeded. Mathe-

matically, the two statements, "Stress is proportional to strain,
" and

"Stress is equal to strain times a constant" are equivalent. The

proportionality constant is the modulus of elasticity.

Since for a given cross section, stress is proportional to force, and
for a given original length, strain is proportional to elongation, it is

also possible to state Hooke's law: for a given specimen, elongation
is proportional to stretching force. This may be expressed by the

equation
F = ke

where k is a constant for a given specimen. We may also set up a

similar expression for the restoring force which,byNewton's third law,
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is equal and opposite to the stretching force, F. This equation is

F = - ke

6-6. Illustration of the Use of Hooke's Law. A force of 10 pounds
will produce in a certain helical spring a strain of 10 per cent. What ad-

ditional force will produce an additional strain of 10 per cent of the new

length, assuming that the elastic limit is not reached?

Using Hooke's law in the form, elongation is proportional to stretching

force, we have
0.1 L _ 0.1 (L + 0.1 L)

10 F

where L is the original length and F is additional force which we seek. The

right-hand side may be rewritten

0.1 (1.1L) 0.11Z,

so that the original proportionality becomes

aiL = 0.11L

10 F

Canceling the Z,'s and solving for F, we find that F is 11 pounds.

6-7. Illustrations of the Use of Young's Modulus. (1) Let us consider

the following problem. What force is necessary to produce a stretch of an

eighth of an inch in a steel wire 10 feet long (120 inches long) and one

hundredth of an inch in diameter?

The strain in this case is 0.125/120 or 0.001042. Since the material is

steel, we shall take the modulus to be 30,000,000 lb./in.
2 By multiplying

both sides of the equation in section 6-4 by (strain), we obtain the relation

that stress = (strain) (modulus). The necessary stress in the present case

is therefore (0.001042) (30,000,000) lb./in.
2

,
or 31 ,300 pounds per square inch.

The cross section of this wire is [7r(0.01)
2
/4] in.2

,
or 0.0000785 in.2

Since stress is the ratio of force to area, the force is the product of area and

stress, or in this case (0.0000785 in.2) (31,300 lb./in.
2
)
= 2.46 pounds.

(2) As a second illustration, assume a literal problem. A certain wire

has a cross section of A square inches, and a length of L inches. If a force

of F pounds produces an elongation of e inches, find Young's modulus, F.

The stress is, then, F/A, and the strain e/ L. Therefore the modulus,

F, is (F/A)/(e/L) or

F = FL/Ae

Since we have used letters rather than numbers, the result is general, that is,

it may be taken as a formula useful in solving any problem involving

Young's modulus.

6-8. Bulk Modulus. The modulus obtained by dividing pres-

sure by volume strain is called the bulk modulus. The reciprocal of

the bulk modulus is called the compressibility. If B represents the
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bulk modulus, V the original volume, and v the decrease in volume,
then v/ V is the volume strain, and the formula connecting the four

quantities is pv
B =

v

where P represents the pressure (the stress). Solids, liquids, and

gases all have volume elasticity, but solids alone have stretch moduli

and shear moduli.

6-9. Illustration of Bulk Modulus. (1) If the specific gravity of sea

water is 1.03, find the increase in pressure that one would encounter five

miles below the surface of the ocean. (2) If the bulk modulus of sea water

is 31,900,000 lb./in
2

,
how much would a cubic foot of water decrease in

volume if removed from the surface and placed at a point five miles below

the surface?

(1) We find the increase in pressure from the formula P = hD (section

5-4). In this case h = (5) (5,280) feet and D = (1.03) (62.4 lb./ft.
3
), there-

fore P =
(5) (5,280) (1.03) (62.4) pounds per square foot, or 1,697,000

lb./ft.
2 By dividing this by 144 we can change the result to 11,790 pounds

per square inch.

(2) Since B = PV/v, it follows that v = PV/B. Filling in the numeri-

cal values, we have v = (11,790 lb./in.
2
) (1 ft.8)/(3 1,900,000 lb./in.

2
)
=

0.000370 ft.3 In other words, water is so nearly incompressible that its

density at the bottom of an ocean five miles deep is practically the same as

the density at sea level.

6-10. Shear Modulus. In figure 6-2, if the force F is applied

to the area A (to which it is parallel) the shear modulus is

Ax

which is the ratio of the stress, F/A, to the strain, x/y.

6-11. Illustration of Shear Modulus. The shear modulus of glass is

2 X 1010 newtons per square meter. A glass brick, 3 by 4 by 5 centimeters,
rests on the 4 by 5 centimeter face. If a shearing stress of 2,000,000 newtons

per square meter is applied to the upper surface, find the shearing strain,

the relative displacement of the upper and lower surfaces, and the shearing
force.

Modulus = (stress)/(strain); modulus = 2 X 1010 newtons/w2 and
stress 2 X 106 newtons/w2

. Substituting the numerical values into the

2 X
strain

Multiplying both sides by strain and dividing both sides by 2 X 1010
,
we

obtain strain = 10~4
,
or strain = 0.0001. This strain is x/y in figure 6-2,

and y = 3 centimeters. We therefore have

0.0001 =
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Solving for x
9
we obtain x = 0.0003 centimeter, the relative displacement

of the upper and lower surfaces. The shearing force may be obtained from

the equation
shearing force

shearing stress =-----TTT-T-:

-
T^-Jarea of surface on which force is applied

Substituting into this equation the numerical values, shearing stress =
2 X 106 newtons/w2 and area = (0.05) (0.04) or 0.0020 square meter, we
have

2v 106X
0.0020

Solving for the shearing force, we obtain F = 4,000 newtons. The result

may be changed to kilograms by dividing by 9.80. This will give, to three

significant figures, 408 kilograms for the shearing force.

To give an idea of the magnitude of this force, we can multiply it by
2.2 (there are 2.2 pounds in a kilogram) and obtain its equivalent in English

units, which would be 898 pounds.

6-12. Bending of Beams; Twisting of Rods. In more ex-

tended treatises, other applications of elasticity would be discussed.

One of these could well be the sag to be ex-

"^ pected in a beam of given dimensions and given

material, supported at the ends and carrying a

given load with a given distribution. This ex-

pression would involve Young's modulus. The
behavior of a spring board can also be com-

_JI__A__ putcd by the help of Young's modulus.

._
***

Another common problem concerns the amount
of twist that could be expected in a rod under

given conditions. This expression would involve the shear modulus,
which may also be called the rigidity modulus. It will be noticed that

bending and twisting do not involve any new moduli of elasticity.

In fact it may be shown that the three moduli that we have discussed

are all related, so that if we knew any one of them for a given ma-

terial, we could compute the other two.

6-13. Ultimate Strength. In testing materials, it is impor-
tant to know not only Young's modulus, the compressibility and

rigidity modulus, and the elastic limits, but also the stresses that

will cause the specimen to fail. For example, it is possible to carry
the tensile stress beyond the elastic limit to a point such that the

specimen will break in two. This stress is known as the ultimate

strength of the material. Data of this type may be found in engi-

neering handbooks.
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SUMMARY OF CHAPTER 6

Technical Terms Defined

Stress. Ratio of a force to the area on which it is applied.

Strain. Ratio of deformation to original dimension.

Elasticity. Ratio of stress to strain for a given material.

Young's Modulus. Coefficient of stretch elasticity. It is the ratio of the

tensile stress to the resulting tensile strain.

Bulk Modulus. Coefficient of volume elasticity. Ratio of the pressure to

the resulting volume strain.

Compressibility. Reciprocal of the bulk modulus. Ratio of the volume
strain to the pressure producing it.

Shear Modulus. Coefficient of rigidity. Ratio of the shearing stress to

the resulting shear.

Bending. Involves Young's modulus.

Twisting. Involves the shear modulus.

Elastic Limit. Stress beyond which specimen will not return to its original

dimensions when released.

Ultimate Strength. Stress necessary to break the specimen.

Laws

Hooke's Law. Within the elastic limit, stress is proportional to strain.

PROBLEMS

6-1. A steel bar one quarter inch square is ten feet long. When the bar,
in a vertical position, is made to support a one-ton weight, the bar is

stretched one hundredth of a foot. Compute the stress, strain, and Young's
modulus for this sample of steel.

6-2. If a bar, one half inch square and 20 feet long, made from a sample
of steel the modulus of which is .32,000,000 pounds per square inch, be sub-

stituted in place of the bar in the preceding problem, what will be the stress,

the strain, and the elongation?

6-3. What should be the diameter of a circular steel rod 10 feet long, if

the permissible tensile stress is 10,000 pounds per square inch, in order to

support a load of 50 tons? If Young's modulus is 32,000,000 pounds per

square inch, how much will the rod stretch?

6-4. If Young's modulus for a sample of steel is 30,000,000 pounds per

square inch, what is the value of this modulus in newtons per square meter?

6-5. If a pressure of 2,000 pounds per square inch decreases the volume
of a copper sphere, one foot in diameter, by 0.258 cubic inch, compute
the bulk modulus of copper.

6-6. Two opposite forces of 5 newtons each are applied, as in figure 6-1,

to opposite faces of a cubical block of jelly 10 centimeters on an edge, and

produce a relative displacement of one centimeter. Find the stress, the

strain, and the shear modulus.
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6-7. A rectangular block of brass (shear modulus = 5,500,000 pounds
per square inch) 10 inches high rests on a horizontal table. A force which
is parallel to the surface of the table is applied to the upper surface of the

block and produces a displacement of an eighth of an inch. What is the

shear? Find the shearing stress.

6-8. If a tensile stress of 20,000 lb./in.
2
produces in a wire a strain of

0.000625, applying Hooke's law, what stress will produce a strain of 0.1

per cent?

6-9. Neglecting the friction of the plunger, how much work would be

done in pulling an airtight piston far enough out of a cylinder against atmos-

pheric pressure (14.7 pounds per square inch) to leave a vacuum under it

the volume of which is 10 cubic inches?



CHAPTER 7

Vectors

7-1. Scalars and Vectors. A distinction to which we must be-

come accustomed in physics is that between scalars and vectors. If a

physical quantity is not associated with the idea of direction, it is

known as a scalar. Such values may be read from scales, such as dials

of watches, steel tapes, speedometers, barometers, and the like. A
scalar quantity has magnitude but not direction. Examples are: ten

seconds, two cubic feet, or five pounds of sugar. It would be meaning-
less to speak of ten seconds "up," two cubic feet "west," or five

pounds of sugar "south!" On the other hand, physical quantities

that are associated with direction are called vectors. A vector is a

quantity having both magnitude and direction; a vector is not com-

pletely described until both are given. A vector is a combination of

a quantity read from a scale and the associated orientation in space
of that quantity. Examples of vectors are: a velocity of 50 miles per
hour due north, a 25-pound pull vertically down, or a displacement of

20 feet to the east. If at any time we wish to discuss merely the

magnitude of a vector without reference to its direction, we thereby
reduce the vector to a scalar for the time being. For example, the

speedometer of an automobile gives the speed but not the direction

of motion; speed is therefore a scalar. In physics we reserve the

53



VECTORS [7-2

Figure 7-1.

word speed to describe the scalar rate and use the word velocity for

the vector concept. A vector is conveniently represented by an

arrow. The length of the arrow is made proportional to the magni-
tude (the numerical part) of the vector, and the direction of the

arrow corresponds to the direction of the vector quantity.
7-2. The Triangle Method of Adding Vectors. There is a

branch of mathematics called vector analysis which deals with the

addition, multiplication, differentiation, and so

on, of vectors, but for our purpose it will be

sufficient if we learn to add vectors. The sim-

plest illustration of a vector is a displacement;
a displacement is the change in position that

would be necessary to transfer an object in a

straight line from a reference point (usually

called the origin) to the point that it now hap-

pens to occupy. For example, after a man has

walked due north four miles, his displacement
is four miles due north; the displacement would

still be the same if he had reached this point by
a circuitous route. If after that, he should walk three miles due

east, his displacement would then be five miles in a direction

about 37 degrees east of north (see figure 7-1). We may consider

that we have added a displacement of 4 miles due north to a dis-

placement of 3 miles due east and that the vector sum (or resultant

as it is often called) is 5 miles in a direction north, 37 degrees east.

The student may verify this result either by drawing the figure to

scale and measuring the length of the hypotenuse and using a pro-

tractor to obtain the angle, or he may use the Pythagorean theorem

and observe that 42 + 3 2 = 5
2
,
and then use trigonometry to get

the angle.

The ancient Egyptian "rope-stretchers," the equivalent of our

modern surveyors, used ropes with knots at convenient places to

enable them to form right angles quickly through
the use of 3-4-5 triangles.

The general rule for the triangle method of

adding vectors is to put the vectors together, head

to tail, and the vector sum or resultant will be

obtained by drawing an arrow straight from the

beginning of the first vector to the end of the

second. The method may be extended to add

several vectors at a time. In that case we talk of the polygon
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method, and place all the vectors together head to tail in any order,

and connect the beginning of the first to the end of the last.

7-3. The Parallelogram Method of Adding Vectors. When
the vectors under consideration are forces, it is usually more con-

venient to use another method of combining them, because the

vectors representing the forces are all acting at the same point. Con-

sider for example the three-cornered tug-of-war depicted at the head

of this chapter. If each team exerts a force of 500 pounds and the

angles are all 120 degrees, which team is winning? One could put up
a superficial argument to the effect that

any one of the three teams is losing, for

is it not opposing a mere 500 pounds to

1,000 pounds? But this can not be true;

all three teams can not be losing! Actually
we have to add two of the 500 pounds

vectorially and compare this resultant with

the third force. And in this case we can

see from symmetry that the tug-of-war
is a tie.

The parallelogram rule which we find

convenient in this case may be stated as

follows: assuming that the two vectors to

be added are both drawn from the same

point, complete the parallelogram by draw-

ing two more lines parallel to the given
vectors. The parallelogram now consists

of the two original arrows and the two

additional lines. The vector sum or re-

sultant will be the arrow drawn from the two coinciding tails to the

opposite corner of the parallelogram. In the case of the three-

cornered tug-of-war, the diagram will be as shown in figure 7-2. In

this case the resultant cuts the parallelogram into two equilateral

triangles and we have the rather unusual result that the vector sum
of two 500-pound forces 120 degrees apart is itself another force of

500 pounds. This is sufficient to offset the third team.

Only two forces at a time can be handled by the parallelogram

method. If we had three or more vectors to add, we should add two

of them, then add the third to the resultant of the first two, and so on.

7-4. Another Illustration. On the physics lecture table it is

convenient to illustrate the parallelogram law by the

shown in figure 7-3. Three strings are tied together at <

Figure 7-2.
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weights of 3, 4, and 5 pounds respectively are attached to the strings.

By letting the 5-pound weight hang directly down and using two

pulleys, it is possible to exert three forces on A of 3, 4, and 5 pounds

respectively. If the strings are displaced from their position of equi-

librium in any direction, they will come back to a position such that

the strings with the tensions of 4 and 3 pounds will make an angle of

90 degrees with each other and angles of 37 degrees and S3 degrees

Figure 7-3.

respectively with the vertical. If a parallelogram be constructed

using arrows with lengths proportional to 4 and 3 pounds respec-

tively, and in the directions indicated in figure 7-3, it will be found

that their resultant, the diagonal of the parallelogram, will be ver-

tical, and equal to 5 pounds. Thus the 5-pound weight exerts enough
force downward to balance the vector sum of the other two forces.

7-5. Resolution of Forces Into Components. The procedure
of combining vectors may be reversed: a single vector may be re-

placed by two vectors. In this process,

which is called resolving a vector into

components, a parallelogram (nearly al-

ways a rectangle) is drawn with the

given vector as its diagonal. Suppose
the two forces C and Z?, figure 7-4, to

be at right angles to each other, and
let the resultant be called R. In this

case, C and D are rectangular com-

ponents of R. But the same diagram

may be constructed in the reverse

order: given R and the direction of

either C or Z), it is possible to construct

a rectangle such that R shall be its

diagonal and such that the sides of the

rectangle shall be either parallel or perpendicular to the given di-

\

\

Figure 7-4.
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rection. Given any force, it is always possible to resolve it into

two components, one parallel, and the other perpendicular, to a

given direction.

7-6. Properties of Certain Triangles. In this chapter we
shall confine ourselves to four kinds of right triangles (figures 7-5,

7-6, 7-7, and 7-8). The student will recall from his geometry two

facts, one of which we have already mentioned : (1) in a right triangle,

the sum of the squares of the two legs is equal to the square of the

hypotenuse (Pythagorean theorem) and (2) if the three angles of one

triangle are equal to the three angles of another triangle, the triangles

are similar, and the sides of one triangle are proportional to the cor-

0.500
0.600

0.800

Figure 7-6.

0.866

Figure 7-5.

responding sides of the other triangle, and conversely. Applying the

first of these two propositions, we see that in the figures (0.500)
2 +

(0.866)
2 =

(l.OOO)
2

; (0.600)
2 + (0.800)

2 = (l.OOO)
2
(which gives the

0.707

0.707

Figure 7-7.

u
Figure 7-8.

same set of ratios as 3 2 + 42 = 5 2
); (0.707)

2 + (0.707)
2 =

(l.OOO)
2

;

and that 5
2 + 12

2 = 13 2
. Applying the second proposition we could

say that if we had a 30-, 60-, and 90-degree triangle with the hy-

potenuse equal to 20 feet, the shorter leg would be 10 feet and the

longer leg 17.32 feet.

7-7. Examples of Addition of Forces. (1) Suppose that two horizontal

forces act on a post, one due north equal to 30 pounds, and one due east
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40 lb.

Figure 7-9.

equal to 40 pounds. Find a single force which would have the same effect

as the forces combined.

In order to solve the problem, we draw the arrow PR (figure 7-9) in a
direction such as to suggest north and of such a length as to suggest 30

pounds. For example, we could let each quarter inch represent 10 pounds,
in which case 0.75 inch would repre-
sent 30 pounds. Similarly, from the

same point draw another arrow PS
pointing east and of such a length as

to represent 40 pounds (one inch on
the scale suggested). Complete the

parallelogram RPSQ and draw the

diagonal PQ. It will measure 1.25

inch and represent 50 pounds. With-
out measuring it we could compute its

value by comparing figures 7-6 and
7-9. The triangles DEF and PSQ are

similar because DE/PS = EF/SQ,
or 0.800/40 = 0.600/30. Therefore

DE/PS = DF/PQ, or 0.800/40 = l.OQQ/PQ, which gives us 50 pounds
for PQ.

(2) Given a force of 100 pounds due northeast (that is, the angle with
both the north direction and the east direction is exactly 45 degrees), find

its northerly and its easterly components. In other words, find two forces,
one due north and one due east that together will be equivalent to the

single 100-pound force.

Draw a diagram (figure 7-10) in which an arrow the length of which is

proportional to 100 pounds (say an eighth of an inch represents 10 pounds)
points toward the northeast; call it

TU. Now draw a rectangle in such a

way that the sides will run north-south

and east-west, and so that the 100-

pound force TU shall be the diagonal.

By comparison with figure 7-7, it will

be seen that each component is 70.7

pounds. This fact may also be deter-

mined by measuring the arrows TV
and TW.

7-8. Problem Illustrating Addition

of Several Forces. The following
horizontal forces act on a point: (1)

a force of 750 pounds directed due

southwest, (2) a force of 750 pounds
due south, (3) a force of 200 pounds
directed 60 degrees north of west, and (4) a force of 1,600 pounds directed

30 degrees east of north. Find the northward and eastward components
of the resultant.

70.7 lb.

Figure 7-10.
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The first step in solving this problem is to draw the diagram as indicated

in figure 7-11 with a scale of, say, one centimeter representing 200 pounds.
To lay off the 750 pounds due southwest, a distance representing 750

pounds is measured on a line making a 45-degree angle with both the south

Figure 7-11.

and the west lines. The 200 pounds 60 degrees north of west is measured
on a line between the west and north directions making an angle of 60

degrees with the west, and similarly with the other forces.

Next each of these forces must be broken up into components along the

north-south and east-west axes. This is done by drawing the sides of a

rectangle of which the original force is the diagonal. By reference to the

sample triangles of section 7-6, the values of these components may be found.

The components of the 1,600-pound force are (1,600) (0.866) or 1,386

pounds north and (1,600) (0.500) or 800 pounds east. The 200-pound force

has components (200) (0.866) or 173 pounds north and (200) (0.500) or

100 pounds west. The 750 pounds south is already along the north-south

line and therefore does not need to be resolved. The 750-pound force south-

west has components of (750) (0.707) or 530 pounds south and also 530

pounds west.

Now, let forces to the north and to the east be considered positive while

those toward the south and west are considered negative. Combining the

components just found, we have

+ 1,386 + 173 - 750 - 530 = 279 pounds north

+ 800 - 100 -530 = 170 pounds east.

Although this completes the problem as stated, the student may be

interested in checking the fact that the vector sum of these two components
is a force of 327 pounds in a direction 31.3 degrees east of north. This may
be done by constructing to scale the rectangle having for its sides 279 and

170, measuring the length of its diagonal and measuring the angle with

a protractor.
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7-9. Illustrative Problem Involving a Simple Truss. For the purpose
of simplification, assume that the parts of the truss in figure 7-12 are weight-
less. Which are tension members and which are compression members?
Must point A be supported from beneath or held down? Find the tension

or compression in each member.
To find which are the compression members and which the tension

members, consider the effect of breaking each member in turn while every
other part remains as it is in the diagram. For example, if AC were broken,
C would not fall toward A but would move farther from it. Therefore AC
is a tension member. Applying the same test to CD, we see that it is also

a tension member. If ED were broken, D would promptly move toward J5,

therefore BD is a compression member. If BC were broken, ACD would

try to form a straight line between A and Z), bringing C toward #, therefore

BC is a compression member. Similarly A B is a compression member.

Figure 7- 12.

The whole structure somewhat resembles a seesaw with fulcrum at J5,

that is, point B must be supported from below while point A must be

held down.

Since the entire structure is in equilibrium, each point is separately in

equilibrium (at rest in this case) ;
therefore the simplest method of finding

the numerical values of the tensions and compressions is to consider the

forces acting at each point in turn. Since we already know one of the forces

acting at Z>, let us consider that point first. Three forces act on point D
(see figure 7-13), 1,000 pounds straight down, the tension in CD horizontally
to the left, and the compression in BD in a direction slanting upward 30

degrees to the right of the vertical. This slant force must be resolved into

a vertical and a horizontal component, which from now on are to be thought
of as replacing the slant force. Since D is in equilibrium, the upward force

must equal the downward force which is 1,000 pounds. Reference to figure
7-5 shows that the longer leg of a 30-degree right triangle is 0.866 of the

hypotenuse; therefore the hypotenuse of our triangle is 1,000/0.866 or 1,155

pounds, which is the compression in the member BD. On account of the

equilibrium at point Dy the tension in the member CD Is equal to the hori-
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zontal component of the slant force of 1,155 pounds. Further reference to

figure 7-5 shows that the shorter leg is equal to half the hypotenuse, or in

this case, 577 pounds, which is the tension in member CD.
The tension in member CD exerts a

pull to the left of 577 pounds on D and
a pull to the right of the same amount
on C. Similarly, since we are ignoring
the weight of the truss members, the

compression in member BD exerts a

push upward to the right on D of 1,155

pounds and a push downward to the

left on B of the same amount. We are

therefore in a position to solve for all

the forces at point C just as we did at

point D. The result is that we dis-

cover the tension in AC to be 1,155

pounds and the compression in BC to

be 1,000 pounds.
When we solve for the forces acting

at point B
y
we discover that in order

to get equilibrium, we must have an

upward force of 2,000 pounds exerted

by whatever the truss is resting on at

point B. In solving for the forces at

point B, we also discover that the com-

pression in member AB is 577 pounds.
When we solve for the forces at

point A y
we find that in order to obtain

equilibrium, there must be a downward force of 1,000 pounds in addition to

the tension in AC and the compression in AB. It will be left to the student

to carry out the actual work of solving for the forces at points C, B, and A.

SUMMARY OF CHAPTER 7

Technical Terms Defined

Scalar. A physical quantity which may be read off of a single scale, e.g.,

time, length, speed.

Vector. A physical quantity which has both magnitude and direction, e.g.,

displacement, force, velocity. Vectors are conveniently represented by
arrows.

Resultant or Vector Sum. A single vector which is equivalent to two or

more vectors combined.

Triangle or Polygon Addition of Vectors. If several arrows representing
vectors are placed together head to tail without altering any of their

lengths or directions, an arrow drawn straight from the tail of the first to

the head of the last is the resultant of the group.

Parallelogram Method of Adding Vectors. If two arrows representing

vectors are both'drawn from the same point, the resultant will be a third

1000 h

Figure 7- 13.
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arrow also drawn from the same point to the opposite vertex of a paral-

lelogram formed with the two given vectors as two of its sides.

Rectangular Components. Any two mutually perpendicular vectors which

will add vectorially to a given vector are said to be rectangular com-

ponents of that vector. The process of finding the two components is

called "resolving a vector into rectangular components."

PROBLEMS

7-1. Find the vector sum of a three-pound force due north and a four-

pound force due west. Would there ever be any practical use for the

arithmetic sum of these two quantities?

7-2. Find the vector sum of an eastward force of 50 pounds, a westward
force of 90 pounds, and a southward force of 30 pounds.

7-3. Given a force of 50 pounds acting in a direction 30 degrees south of

east, resolve it into (1) two components, one due east, and the other due

south; (2) resolve it into two components, one 15 degrees north of east, and
the other 15 degrees east of south.

7-4. Velocities are vector quantities and are to be added in the same

way as forces. A stream flows southward at a speed of five miles per hour.

A motor boat driven westward relative to the water at a speed of twelve

miles per hour actually travels in a direction about 22.5 degrees south of

west. Find its actual speed.

7-5. A ten-pound weight is held in position by two strings, one hori-

zontal and the other making an angle of 30 degrees with the vertical. Com-

pute the tension in each string.

7-6. A motor boat can travel at the rate of 12 feet per second in still

water. Disregarding the time lost in starting and stopping, how long will it

take to cross a river, 1,200 feet wide, the drift speed of which is 5 feet per

second, if the boat heads directly across? How far down on the opposite
bank will the boat land?

7-7. Find the resultant (direction and magnitude) of the following seven

forces, all horizontal: 100 pounds due north, 100 pounds due northeast,
100 pounds east, 80 pounds 30 degrees south of east, 60 pounds due south,
50 pounds 30 degrees south of west, and 40 pounds due west. The method of

section 7-8 is best for a problem of this type.

7-8. A triangular frame in a vertical plane has its ten-foot member hori-

zontal and its six-foot and eight-foot members above the ten-foot member.

Neglect the weight of the members. A 100-pound weight hangs from the

junction of the six-foot and eight-foot members. Compute (1) the com-

pression in the six-foot member, (2) the compression in the eight-foot mem-
ber, and (3) the tension in the ten-foot member.

7-9. Draw the diagrams similar to figure 7-13 for the points C, B, and
A

}
in the truss-work of figure 7-12.

7-10. Figure 7-14 represents a bridge truss with a span of 48 feet.

Assume that the support at A exerts a force vertically upward on the truss

of 500 pounds and compute the various compressions and tensions in the

members, assumed weightless, which are hinged at the joints. The load at

G is 2,000 pounds and all the triangles are of the type' shown in figure 7-6.
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7-11. A swimmer's speed is 50 yards per minute in still water. If a river

flows at the rate of 30 yards per minute, find (1) the time required to swim
to a point 100 yards upstream and back, also (2) the time needed to swim
100 yards across-stream and back. The considerations of this problem led

indirectly to Einstein's famous theory of relativity.

16* 16'

Figure 7-14.

7-12. How great a force (and in what direction) does the atmosphere
exert on one square foot of a vertical surface? Why is the total force exerted

by the atmosphere on the whole earth equal to zero? What is the total

force on any stationary object?

7-13. How much work will be done in pulling a sled and load, which

together weigh 100 pounds, horizontally for a distance of 50 feet, if the

coefficient of friction is 0.1 and the rope makes an angle of 45 degrees with

the horizontal?

7-14. How great a force must be exerted on a 45-degree wedge to enable

the wedge to exert two normal forces of 130 pounds each. What is the

mechanical advantage of this wedge?
7-15. How much force parallel to the plane is required to support a

200-pound weight on a smooth inclined plane 10 feet long and 6 feet high?
Also find the normal force exerted by the plane on the weight.

7-16. If the coefficient of friction in the preceding problem is 0.2, how
much more force must be exerted in drawing the weight up the plane rather

than in lowering it?
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Moment of Force; Center of Gravity

8-1. Translatory Versus Rotatory Motion. All motions, no

matter how complicated, can be thought of as being combinations of

two simple kinds of motion
;
one of these is called translatory motion

and the other rotatory. We seldom have either of these in its pure

state, though they are both readily visualized. Pure translatory
motion is motion of such a sort that any line drawn on the body under

consideration remains parallel to its original position during the

motion. An example of pure translatory motion is the behavior of a

compass needle as the compass is moved about. Even though the

compass itself is carried round and round on a merry-go-round, the

needle will continue to point in the same direction and thus remain

parallel to its original position. That is, the needle is moving with

pure translatory motion.

But the merry-go-round itself is a good example of pure rotatory
motion. This may be defined as that type of motion where the center

of gravity remains at rest, but a line drawn at random in the body
moves so that it makes continually changing angles with its original

position. The phrase "at random" was used in the preceding sen-

tence, because one line (of the infinitude of lines that could be drawn)
is in the axis of rotation

;
this line does not rotate nor does any line

in the body parallel to it. Another example of pure rotation is the

64
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motion of a flywheel on a stationary engine. On the other hand, in

the case of a closing door, the motion is a combination of translation

and rotation, because the center of gravity of the door moves, like-

wise lines drawn at random on the door are making continuously

changing angles with their previous positions.

8-2. Causes of Motion. If a single force is applied to a body
in line with its center of gravity, this force will produce pure trans-

lation ;
if on the other hand, the force is not in line with the center of

gravity, the result will be a combination of translation and rotation.

If the center of gravity is held at rest by one force and an equal and

opposite force is made to act somewhere else on the body, the result

will be pure rotation. As an example of the last case, consider a small

emery wheel at rest. It can be rotated by exerting a force tangent to

the circumference. Suppose this force to be two ounces and suppose
the radius of the wheel to be three inches, it is then customary to

multiply the two ounces by the three inches and announce that a

torque of six inch-ounces acts on the wheel. The product of a force by
a distance from the axis perpendicular to the force is called a torque.

Forces produce translation and torques produce rotation. But forces

and torques may be balanced, in which case we have equilibrium.

8-3. Moment of Force. If a boy weighing 50 pounds were to

balance another boy, who weighs 100 pounds, on a seesaw, it is com-

mon knowledge that the lighter boy would have to sit farther from

the pivot than the heavier; in this case just twice as far. If in our

illustration we take these distances to be six feet and three feet

respectively, then we could form a proportion as follows: 50 pounds
is to 100 pounds as three feet is to six feet. The simplest way of

writing a proportion is to put it in the form of an equation of two

fractions. For instance, A is to B as C is to D is usually written

A/B = C/D. This is also equivalent algebraically to (A) (Z?)
=

(5) (C). That is, the product of the extremes equals the product of

the means. So in our numerical illustration we can say

50 Ib./lOO Ib. = 3 ft./6 ft.

or
(50 Ib.) (6 ft.)

= (100 Ib.) (3 ft.)

Carrying out the multiplication, we find that 300 pound-feet equals
300 pound-feet. We have again come upon a torque. This physical

quantity expressed here in pound-feet is also called moment offorce.

But since the expression is a bit lengthy it has become customary for

engineers to shorten it to torque; we shall use both expressions. A
moment offorce is the product of a force and a distance measured per-
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pendicularly from some given pivot called an axis. It must be em-

phasized that the distance is perpendicular to the force. A torque is

either clockwise or counterclockwise. In the illustration given in figure

8-1, (50 Ib.) (6 ft.) is counterclockwise because if it were the only

torque in the diagram, it would cause a counterclockwise rotation

about the point Q.

8-4. Equilibrium. A body is in equilibrium when it is at rest or

when it is moving with uniform speed in a constant direction. In

this book most of our cases of equilibrium will also be cases of rest.

If a body is in equilibrium, (1) the sum of the components of the

forces acting on the body in any given direction will just balance the

sum of the components in the opposite direction, and (2) the clock-

wise torques will just balance the counterclockwise torques. For

instance, in figure 8-1, we shall not have equilibrium unless the down-

100 Ux

IjDIb.

p 6' A y q

Figure 8-1.

ward forces at P and R are balanced by an upward force at (), and

this upward force must be 150 pounds. (See figure 8-2). It is im-

portant in an equilibrium problem to make sure that all the forces

act on the body under consideration. A mixture of forces exerted by

the body and forces exerted on the body will lead to incorrect results.

100 Ib

hoib.

y

150 ib.

Figure 8-2.

If the body is in equilibrium, we are not limited in our choice of an

axis; any point may be selected. Q is simply the most natural point

to consider as the axis. Let us see if figure 8-2 will still represent

equilibrium if we select R as the axis: it should. When R is the axis,

the 100-pound force produces no torque because the perpendicular
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distance from R to the 100-pound force is zero; in other words, if the

force acts directly on the axis, it will tend to produce no rotation

about that point. We do, however, have two other torques: (50 Ib.)

(9 ft.) counterclockwise and (150 Ib.) (3 ft.) clockwise, each of which

is numerically 450 pound-feet. Hence, we still have equilibrium.
8-5. Rules for Solving an Equilibrium Problem. The

engineer is often faced with the problem of the magnitude, direction,

and point of application of the force that must be added to those

already present to produce equilibrium. And he has found that in

the solution of this type of problem it is convenient to follow a set

of rules, as follows:

(1) Draw a diagram of the situation, putting in all of the forces

in their proper directions, labeling the known forces with numbers
and the unknown forces with letters. All the forces miist be applied
to the same object.

(2) Choose a convenient direction and a convenient axis.

(3) Resolve all the forces into components that shall be either

parallel or perpendicular to the direction chosen, and henceforth use

these components instead of the original forces.

(4) Write three equations. The first equates the components of

forces in the given direction to the components in the opposite direc-

tion. The second deals similarly with the components perpendicular
to the given direction. The third equation equates the clockwise

moments of force to the counterclockwise moments about the

selected axis.

(5) If there are no more than three unknowns, they may be found

by solving simultaneously these three equations. If there are more

than three unknowns, then other relations between the forces must

be supplied, furnishing more equations.

8-6. Center of Gravity. We have made several references to

the existence of a center of gravity in a given body; it is now time to

show how to locate it and to demonstrate its use. If we can suspend
the entire body by a single wire, the center of

gravity will lie somewhere along the line

which contains the wire. If we try the experi-

ment again with the wire in a different place,

we shall have two intersecting straight lines,

and their intersection will be the desired

center of gravity. While the body is sus-

pended by the single wire, it is in equilibrium. The diagram repre-

senting this equilibrium contains just two equal and opposite forces:
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one of these is the upward force exerted by the wire on the body, and

the other is the downward pull of gravity on the body. In order to

produce no torques, the forces must lie in the same line.

We draw the conclusion then that the effect of gravity, which can

be considered to be a large number of small forces, one for each

infinitesimal portion of the object, may also just as well be rep-

resented by a single arrow called the weight and drawn downward
from a single point called the center of gravity. The position of the

center of gravity then is defined by the fact that the sum of the

clockwise torques due to the weights of each infinitesimal portion of

the body about this center is equal to the corresponding sum of the

counterclockwise torques. The center of gravity of a uniform sym-
metrical body is at its geometrical
center. The intersection of the me-

dians is the center of gravity of a

triangle. If the body is made of

parts, the center of gravity of each

of which is known, the center of

gravity of the whole may be found

by solving an equilibrium problem,

making use of the fact that when
the body is supported at its center

of gravity, it is in equilibrium. The
center of gravity of a body like a

doughnut is not in the material of the body at all, but in the hole.

The use to be made of the center of gravity concept is that the

moment we know the weight of a body, we need draw but one arrow

on our diagram to represent it vertically down from the center of

gravity the length of the arrow being proportional to the given

weight.

8-7. Problem Illustrating Equilibrium. A 50-foot 100-pound ladder,
the center of gravity of which is at a point one third of its length from the

bottom, stands with its base 30 feet from the foot of a perfectly smooth

wall. A 200-pound man is two thirds of the way up the ladder. Find the

forces exerted on the wall and the ground by the ladder, assuming equilibrium.

Following the rules given in section 8-5 (1) we draw a diagram (ngure

8-3) in which the two known forces are drawn at the proper places and in

the proper directions, and labeled respectively 100 pounds and 200 pounds.
The unknown force exerted by the wall on the ladder must be exactly hori-

zontal and toward the right, since a perfectly smooth wall is incapable of

exerting any forces parallel to itself. This force is labeled with a letter, say

JP, and by Newton's third law, is equal and opposite to the desired force

exerted by the ladder on the wall. Let us emphasize again that every force
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in the diagram must act on the ladder, so that it would be incorrect to replace
force F by the force acting in the other direction, exerted by the ladder on
the wall. The force exerted by the ground on the ladder slants up and to

2000V.

Figure 8-3.

the left, and is also, by Newton's third law, equal and opposite to the desired

force exerted by the ladder on the ground. It has one component that pre-
vents the ladder from sliding along the ground and one component that

prevents the ladder from sinking into the ground. The slant force we shall

call S. In accordance with rule (2), we choose the vertical direction as con-

venient because our two known forces are already in that direction, and the

bottom of the ladder as a convenient axis because an unknown force acts

there. Any forces that act at the axis wUl produce no torque, and it is advan-

tageous to prevent the appearance of unknown forces in the torque equation.
For this reason it is also common practice to choose as axis a point where at

least two forces act, and if one or more of them are unknown, so much the

better. (3) The only force that is not already either parallel or perpendicular
to the direction chosen is the slant force S. So we resolve this into a ver-

tical component F, and a horizontal component //. It will be noticed that

all three of these forces 5, F, and H are unknown. (4) We now write our

three equations. The slant force 5 will not appear in these three equations;
it is replaced by its two components V and H .

V =100 + 200 (a)

F = H (b)

40 F = (200) (20) + (100) (10) (c)

Forty feet is the vertical distance of the upper end of the ladder above the

ground, corresponding to side DE of figure 7-6, that is 402 = SO2 302 . It
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is necessary to use the vertical distance here because the force F is hori-

zontal, and by the definition of a moment of force (section 8-3), the distance

and the force must be perpendicular to each other. (40) (F) is the only
clockwise torque in the figure, the other two torques being counterclockwise.

It will be noticed that in the case of all three of these torques, the procedure
is first to draw a line containing the force, then to drop a perpendicular from
the point selected as axis to the line containing the force. From equation

(c) y
Fis 125 pounds; from (a), V is 300 pounds; and from (b) His 125 pounds.

Knowing H and F, we can find from the Pythagorean theorem that S is

325 pounds (see figure 7-8). The answers to our problem are therefore 125

pounds and 325 pounds.

8-8. Problem Illustrating Center of Gravity. A certain bolt has a head

measuring 1 by 1 by Y^ inch that weighs a quarter ounce, and a shaft, nine

inches long that weighs ten ounces. Compute the location of the center of

gravity by finding just where a knife edge must be placed under the bolt so

that the bolt will be in equilibrium.

Since the shaft is taken as having a uniform cross section, its center of

gravity is 4.5 inches from the head of the bolt. Similarly the center of gravity
of the head is at its geometrical center. We therefore draw arrows rep-

resenting downward forces of 10.0 ounces and 2.25 ounces respectively at S
and // in figure 8-4. To balance these two forces, there must be an upward
force, equal to their sum and applied at the center of gravity of the bolt as

a whole.

In choosing a suitable axis about which to compute our torques, it is

possible to find arguments in favor of several positions. The natural axis is

Figure 8-4.

the center of gravity, but since this is unknown, an unknown quantity will

enter into each of the torques and make the equation unnecessarily com-

plicated. If we take the right-hand end of the shaft as our axis, there will be

three torques in the equation but there will be the advantage that when we
solve for the unknown distance between the center of gravity and the end of

the shaft, the result will need no further interpretation. If we take either

point S or point // as an axis, there will be only two torques in the equation,
but the result will have to be interpreted. We shall solve the problem with

H as axis and leave it to the student to try some other point.

Let the distance from H to the center of gravity be called x. The
moment of 2.25 ounces about H is zero. The moment of 12.25 ounces about
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H is 12.25#, and is counterclockwise. The moment of 10.0 ounces about H
is (10.0) (4.75) and is clockwise. The equation is

12.25* = (10.0) (4.75)

Solving for x, we obtain x = 3.88 inches. But instead of announcing that

the center of gravity is 3.88 inches from the center of the head, it will be
much more convenient to say that it is 3.88 0.25 or 3.63 inches from the

head, or 9.00 3.63 or 5.37 inches from the end of the shaft.

SUMMARY OF CHAPTER 8

Technical Terms Defined

Pure Translatory Motion. Motion such that any line drawn on the body
remains parallel to its original position during the motion.

Pure Rotatory Motion. Only one line in the body, the axis of rotation, re-

mains fixed. This line must contain the center of gravity. During the

motion any line not parallel to this axis moves so as to make continually

changing angles with its original position.

Moment of Force. Product of a force and a distance measured perpen-

dicularly from the axis to the force. In our two-dimensional problems,

torques will be either clockwise or counterclockwise.

Equilibrium. A situation such that the body is either at rest or moving
with uniform speed in a constant direction.

Conditions for Equilibrium. (1) The sum of the upward forces equals the

sum of the downward forces.

(2) The sum of the forces to the right equals the sum of the forces to

the left.

(3) The sum of the clockwise torques equals the sum of the counter-

clockwise torques about a given axis.

Center of Gravity. A point in the body about which the gravitational

torques are in equilibrium. In solving an equilibrium problem, the entire

weight of the body may be considered as concentrated at this point.

PROBLEMS
8-1. Compute the three torques in figure 8-2 about a point two feet to

the right of R. Are they in equilibrium?

8-2. In figure 8-1, consider the seesaw to consist of a uniform nine-foot

plank weighing 60 pounds. Where should the 50-pound boy be placed if

the pivot is to remain in the same place?

8-3. Compute the center of gravity of the bolt in figure 8-4 by using
the right-hand end of the bolt as axis.

8-4. Find the center of gravity of a croquet mallet, considering it as

consisting of two cylinders of the same material, the head 2.25 inches in

diameter and 7.00 inches long, and the handle 0.875 inch in diameter and
26.0 inches long.

8-5. A 50-foot 200-pound ladder leans against a vertical wall making an

angle of 30 degrees with the wall. The wall exerts an upward force of eight
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pounds on the ladder together with an unknown horizontal force. The cen-

ter of gravity of the ladder is half-way up; also at the half-way point, a

100-pound boy stands. If the force of friction between the ladder and the

ground is 30 pounds, find the additional horizontal force at the base neces-

sary to prevent the ladder from slipping.

8-6. The load on a wheel 26 inches in diameter is 500 pounds. What
horizontal force, applied at the axle, will be necessary to pull the wheel over

a stone one inch high?

8-7. A gate weighs 25 pounds, has its center of gravity at its geometrical
center, and is four feet square. Its hinges are three feet apart. If a 50-pound
boy is swinging on the outer corner of the gate, find the horizontal com-

ponent of the force on the upper hinge.

8-8. A 30-foot ladder leans against a smooth vertical wall making an

angle of 30 degrees with the wall. A 200-pound man stands two thirds of

the way up the ladder. The ladder weighs 100 pounds and has its center of

gravity at the geometrical center. Compute (1) the horizontal force of the

ladder on the wall, (2) the vertical component of the force which the ladder

exerts on the ground, and (3) the necessary force of friction at the ground
to prevent slipping.

Figure 8-5.

8-9. A uniform 25-foot beam F II (see figure 8-5) is fastened to the wall

EF at F. EG is a wire. EFG is an equilateral triangle 15 feet on a side. FH
weighs 200 pounds. Find the tension in the wire EG, and the force exerted

by the wall on FH.
8-10. How far may a 200-pound man climb a 100-pound, 26-foot ladder

(center of gravity at the geometrical center) if the ladder stands with its

base 10 feet from a vertical wall, the coefficient of friction between the

ladder and the floor being 0.21?



CHAPTER 9

Acceleration

9-1. More General Conditions. Up to this time we have con-

fined our attention either to cases of rest or of uniform motion in a

straight line. Under either of these circumstances, we say that we
have equilibrium. Now we must enlarge our discussion to include

the numerous cases where translatory equilibrium is lacking; later

we must see what happens when there is no rotatory equilibrium
and then discuss the general case when we have neither.

9-2. Acceleration. Speed, it will be remembered, is the rate

of change of position ;
its unit is feet per second, miles per hour, and

so on. Velocity adds to speed the concept of direction, and therefore

is a vector quantity. When there is a change in velocity, either be-

cause the direction or the speed changes, we have "accelerated mo-
tion." In order to visualize the physical situation, imagine yourself

to be sitting in the front seat of an automobile, holding a watch, and

looking at the speedometer. When the second hand of the watch

points to 60, the speedometer reads, let us say, 30 miles per hour.

Five seconds later the speedometer reads 45 miles per hour. The
acceleration can be computed in this case by dividing the gain
in speed of 15 miles per hour by the five seconds, and is therefore

numerically three miles per hour per second. Acceleration is de-

fined as the velocity gained per unit of time. In order to find the

73
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acceleration, the rule is to subtract the original speed from the final

speed, and divide the difference by the time required to change the

speed. The speed gained in one second (three miles per hour) may
be expressed in other units. Three miles is the same as 15,840 feet;

there are 3,600 seconds in an hour. (15,840 feet)/(3,600 seconds) is

4.40 feet per second. Therefore the above acceleration of three miles

per hour per second may also be expressed as 4.40 feet per second

per second. Since we have seconds in the denominator twice, it is

also quite customary to express it as 4.40 feet per second squared, or

4.40 feet/second
2

. The important thing to notice in all of these ex-

pressions is that units of time occur as factors in the

denominator twice. This is the important difference

between an acceleration and a velocity, where the

unit of time occurs in the denominator but once.

9-3. Uniform Acceleration. With two ex-

ceptions, we shall in this text confine our attention

to cases of acceleration where the gain in speed is

uniform; otherwise the mathematics becomes com-

plicated, and we need the calculus. The motion of a freely falling

body and the motion of a body sliding down an inclined plane may
be taken as illustrations of practically uniform acceleration. On the

X 60 N 65 70

Figure 9-1.

other hand we must admit that in reality there is no such thing as

absolutely uniform acceleration. Air resistance complicates the mo-
tion of a freely falling body so that it is really not uniformly acceler-
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ated, and even if we went to the trouble of constructing a perfect

vacuum (which we cannot do) the fact that gravity varies inversely

with the square of the distance from the center of the earth would

make the acceleration increase slightly as the object fell. But we
shall not worry about such refinements. Throughout a course in

physics, the student will notice that many simplifying assumptions
are made when a new idea is being introduced, such as weightless

levers, frictionless planes, and so on. As the student advances into

the subject, these simplifying assumptions are one by one re-

moved. We can now deal with real levers which have weight, and

when the coefficient of friction is given, the planes no longer need be

perfectly smooth. After a study of calculus, it becomes possible to

deal with variable accelerations. Figures 9-1 and 9-2 exemplify the

distinction between uniform and variable acceleration; both figures

may be considered as portraying graphically the illustration given
in the preceding section. In figure 9-1 at point A, the speed is 30

miles per hour (or 44 feet per second) and the second hand is point-

ing to 55. At point B the speed is still 44 feet per second and the

second hand now points to 60. Five seconds later the speed is 66

feet per second (45 miles per hour) and remains at that value for the

rest of the time. Exactly the same remarks may be made about

88}

66

lime in seconds

60 65

Figure 9-2.

70 15

points A', B', C', and so on of figure 9-2. The difference is that in

figure 9-1 the speed increases uniformly from B to C as is shown by
the straight line, while in figure 9-2 the increase is smoother but no
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longer uniform, and the line between B' and C" is no longer straight.

However, even in figure 9-2 we may still say that the average rate

of increase of speed is three miles per hour per second, or 4.40

feet/second
2

. Accordingly, in our problems, when it is obvious that

the acceleration is in fact far from uniform, we shall talk about the

average acceleration and proceed as if the acceleration were quite

uniform.

9-4. The Two Fundamental Equations. Limiting ourselves

then to uniform acceleration, we shall never find more than five

quantities involved in a single case of accelerated motion, namely:
initial velocity, u\ final velocity, v, the time necessary to change
from one speed to the other, /; the space (one-dimensional) covered

during the motion, s] and the acceleration itself, a. We have already

discovered that in order to compute a, it is necessary only to sub-

tract u from v and divide by /, assuming that v and u are expressed

in the same units. Thus

" ~T (a)

or v u = at

The average of two quantities may be found by adding them to-

gether and dividing by two. Thus, in the case of the motion from B
to C in figure 9-1, v is 66 feet per second and u is 44 feet per second.

The average of 66 and 44 is (66 + 44)/2 or 55 feet per second.

Average speed must not be confused with average acceleration. If we
know the average speed of a body and the time the body is in motion,
we can compute the distance covered by the body by multiplying the

two. For instance, if for five seconds a body moves at the average
rate of 55 feet per second, it will during that time cover (5) (55) feet

or 275 feet. Expressed in terms of letters, this relationship is

or (b)

9-5. Graphical Representation. The shaded area BCQP in

figure 9-1 represents the distance covered, because PB represents

U] QC represents v\ since BCQP is a trapezoid, its area is the product
of PQ (which is f) and the average of PB and QC (represented on

the diagram by NM). Therefore s = (PQ)(NM) or (BR}(NM).
In a similar fashion the acceleration, a, is (CR)/(BR), because CR is

v u, and BR is the time, /. It is possible to draw the diagram for
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any problem in either uniformly or nonuniformly accelerated

motion, and therefore to solve the problem graphically.

9-6. Derived Equations. The theory of algebraic equations
tells us that if out of five quantities (a, s, /, w, and v) ,

three of them
are known, that is, two of them are unknown, then two equations
such as (a) and (6) are sufficient to determine the unknowns. This

is easy if the knowns happen to be u, v, and /, and the unknowns
a and s; in this case the first form of each equation gives the quan-

tity sought. But in the cases where the unknowns include any two

of the three quantities u, v, and /, it will be necessary to solve the

equations (a) and (6) simultaneously for the two unknowns. As an

aid to the student, we shall now do this once for all, and in this way
derive from equations (a) and (6) three more equations enabling
us in the problems to avoid the solution of simultaneous equations.

In the first place, if we multiply the second forms of equations

(a) and (ft) by each other, we shall obtain

(9 _)(, + )

or 02 W2 _: 2as

If, now, in (c) we substitute for v
2 the value (u + at)

2 or u2 + luat

+ <PP from (a) we obtain

2 + 2uat + aW - w2 = 2as ...

(Ci)
or 5 = ut + $ aft

Finally, in a similar manner we could replace u
2
in (c) by its equiv-

alent (v a/)
2 or v

2 2vat + a2
/
2 from (a) and obtain

i>
2 -

(
2 - 2vat + a2/2) = 2as , ,

or s = vt - i aft

9-7. Summary of Equations. It will be noticed that each

one of our five equations contains only four of the five variables and

therefore omits one variable. It will therefore be more convenient

to describe the equations in terms of the variable omitted than in

terms of the variables contained. Let us now summarize the

equations thus far derived in this chapter.

Variable omitted Equation No.

s v == u + at (a)

-'^
t 2 W2 + 2as (c)

v s = ut + i aft (d)

u s = vt J afl (e)
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It will be found that there is never any need of using equation (e) ;

it may therefore be discarded at this point. The first four equations

should, however, be memorized, unless it be preferred to solve ac-

celeration problems directly from a consideration of figure 9-1 as

indicated, and handle the simultaneous equations that arise thereby.

The use of the first four equations will be illustrated presently. In

the solution of acceleration problems, it is important to settle on a

positive direction at the outset and remember that the opposite
direction is negative. Negative time, however, denotes time meas-

ured backward from the beginning of the problem, and is usually

unimportant.
9-8. The Acceleration of Gravity. When a body falls freely

vertically as a result of gravity, its speed increases nearly uniformly
each second, and we refer to this acceleration as the acceleration of

gravity. The acceleration of gravity is represented by g and is equal

numerically to 9.80 m./sec.
2 or 32.2 ft./sec.

2 This means, for

example, that if at a certain instant during the fall a speedometer
attached to the falling body read 100 feet per second, then just one

second later the speedometer would read 132.2 feet per second.

It is a fact discovered by Galileo about the year 1600 that all bodies,

whether heavy or light, accelerate at about the same rate when

dropped. His celebrated demonstration of this fact took place at

the leaning tower of Pisa, and disproved notions which had been

held by physicists for over nineteen centuries.

9-9. Hints Concerning the Solution of Problems In-

volving Uniform Acceleration. The five equations of section

9-7 are arranged in the order of their difficulty. The first con-

tains two one-degree terms and one second-degree term, but none

of the variables occur to the second power; the second equation
is only slightly more complicated; the third equation contains the

second powers, but no variable occurs more than once; the fourth

and fifth equations are affected quadratics in /. In a simple prob-
lem involving only one object, there will be five variables, but no

more than two of them will be unknown. Pick the two equations
that omit the two unknown variables. Start with the equation
nearest the top of the list. When this equation is solved, we shall

then have four known variables and only one unknown; this can

always be obtained either from equation (a) or (b).

There are ten possible combinations of five things taken two

at a time, therefore there are ten possible types of acceleration

problems. These combinations of unknowns are as follows: a, s;
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5, /; Sj u\ 5, v; a, ; a, w; a, 0; 2, w; /, v; and w, fl. In the case of the

first four, equation (a) may be used to solve for one variable and
then equation (b) for the other. In the case of the next three,

equation (b) may be used to solve for one variable and then equa-
tion (a) for the other. In the eighth and ninth cases, equation (c)

may be used to solve for one variable and then equation (a) for the

other. In the tenth case, equation (d) may be used to solve for u and

then equation (a) for v. It will not be necessary to solve (d) as an

affected quadratic, and it will not be necessary to use equation (e)

at all.

9-10. Illustrative Problems. Several acceleration problems will now
be worked as illustrations.

(A) If a stone is dropped from the top of a precipice 500 feet high, how

long a time will elapse before it strikes the bottom and what will be its speed

just before it lands?

It usually helps, when a problem is to be solved by algebraic methods,
to make a table of the knowns and, the unknowns, assigning letters to each.

In this case

a = 32.2 feet/second
2

s = 500 feet

t = ?

u =
= ?

When a body falls freely, the acceleration is that of gravity and may there-

fore be assumed to be known numerically; the only question is whether it

shall be considered positive or negative. It is immaterial which choice shall

be made, but once the choice is made, it settles the question of sign for the

other variables. For example, in this problem, the moment that we assume
that the acceleration of gravity is positive, everything else in the problem
that is downward also becomes positive, and if there happened to be any
upward distances or velocities in the problem, they would automatically
become negative.

Since the unknowns are t and v, the problem belongs to the ninth case of

section 9-9. We have our choice of using equation (c) which does not con-

tain / and solving for v, or using equation (d) which does not contain i) and

solving for /. Since u is zero in this problem, the choice is of little im-

portance; if u were not zero, it would be much easier to solve (c) for v than

to solve (d) for /. We shall choose the former method. Substituting in

equation (c) we obtain

2 (32.2) (500) = v* - 02

Therefore v2 = 32,200, and v = 179.4 feet/second. Any equation that con-

tains / may now be used; equation (a) is the simplest.

179.4 = + 32.2*

Solving for / gives us t = 5.57 seconds.
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(B) If a stone is projected vertically upward from the top of a 500-foot

precipice with a velocity of 50 feet per second, (a) how long will it take to

reach the highest point in its path and how far above the top of the precipice

will that be; (b) how long will it take to reach the foot of the precipice and
what will its velocity then be?

(a) Tabulating the data, this time letting the upward direction be

positive, we have
a = 32.2 feet/second2

s = ?

t = ?

u = 50 feet/second

v =

This time the unknowns are s and /, so that the problem belongs to the second

case of section 9-9. Therefore we first substitute into equation (a) obtaining

0= 50+ (-32.2) t

Solving this equation for t gives t = 1.553 seconds. Next we substitute

into equation (b)

or, s = 38.8 feet.

(b) We are now going to let the stone drop 538.8 feet to the bottom of

the precipice and solve for the time and final velocity. In accordance with

our practice of retaining only three significant figures, we shall round off

the distance to 539 feet. The data, letting the downward direction be

positive, are

a = 32.2 feet/second
2

s = 539 feet

t = ?

u =
v = ?

Since we have the same set of unknowns here as in problem (A) of this

section, we shall merely record the results of substituting in equations (c)

and (a), v = 186.3 feet/second; t = 5.79 seconds. Adding the time neces-

sary to rise from the top of the precipice to the highest point, to that

necessary to drop to the bottom gives us 1.55 + 5.79 = 7.34 seconds.

(C) Now that we have all the data concerning the trip of the stone

from the top of the precipice upward and then downward to the bottom,
let us tabulate them, then, as a check, assume the initial and final velocities

unknown, thus obtaining a problem belonging to the tenth case of section

9-9. Our problem will be stated as follows: A stone leaves a point 500 feet

from the base of a precipice vertically and 7.34 seconds later lands at the

bottom. Was the stone projected upward or downward, what was its

initial speed, and what was the final speed just before landing?
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The quantity $ is not the total number of feet covered by the stone, but

is the distance between initial and final positions, and is therefore 500 feet

in this case, assuming that we take the downward direction as positive.

Tabulating the data gives us

a = 32.2 feet/second2

5 = 500 feet

/ = 7.34 seconds

*= ?

v - ?

The result of substituting into equation (d) is

500 - (u) (7.34) + J (32.2) (7.34)*

500 = 7.34* + 867

Solving for u gives us u = 50 feet/second. We must interpret the minus

sign as upward since we chose the downward direction as positive. Sub-

stituting now in equation (a) gives us

v = - 50 + (32.2) (7.34)

orv = 186.3 feet/second. This velocity is positive and therefore downward.
And the results check those of problem (B) of this section.

SUMMARY OF CHAPTER 9

Technical Terms Defined

Acceleration. Rate of change of velocity, that is, the velocity gained per
unit time.

Uniform Acceleration. The type of acceleration that would appear as a

straight line on a velocity-time graph.

Average Acceleration. A fictitious uniform acceleration which could re-

place an actual acceleration and involve the same initial and final

velocities in the same time interval.

Equilibrium In Terms of Acceleration. Translatory equilibrium may be

defined as a case in which the linear acceleration is zero.

Acceleration Equations.

(a) v = u + at

= w2 + 2as

(d) 5 = ut + | afl

where u = initial velocity, v = final velocity, 5 = distance between
initial and final positions, / = time between initial and final positions,

and a = acceleration.
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PROBLEMS.

9-1. Galileo dropped a light object and a heavy object simultaneously
from the top of the leaning tower of Pisa. Both fell with the same accelera-

tion, 32.2 feet/ second2 . How long did it take for the objects to reach the

ground, 180 feet below?

9-2. An automobile travels a distance of 100 feet while slowing down
from a speed of 40 miles per hour to a speed of 25 miles per hour. Find the

time it took to slow down, also the acceleration.

9-3. A block slides down an inclined plane with an acceleration of

16 feet/second.
2 How far does it go during the third second from rest?

9-4. A block is sliding down an inclined plane with an acceleration of

400 centimeters per second squared. Find the initial and final speeds if it

covers a distance of 2.5 meters in one second.

9-5. A ball is thrown from a third-story window to the ground 24 feet

below. If it takes two seconds to arrive at the ground, compute the initial

velocity, giving both magnitude and direction.

9-6. If a stone is projected vertically downward from the top of a

500-foot precipice with a velocity of 50 feet per second, how long will it take

to reach the foot of the precipice and what will its velocity then be? Com-
pare the answers of this problem and problem (B) of section 9-10 and explain.

9-7. A ball is thrown upward with an initial velocity of 64.4 feet/second
from a point 80.5 feet above the ground. Find (1) the time that elapses
before it reaches the ground; (2) the velocity it then has; (3) the maximum
height reached above the ground; (4) the time required to reach this height.

(5) Where will it be at the end of three seconds?

9-8. A ball drops 16.1 feet and keeps rebounding in such a way that on
each rebound it rises one per cent of the distance that it has just fallen.

Show that it will bounce an infinite number of times and come completely
to rest in just one and 1 seconds.

9-9. The engineer of a passenger train which is going at the rate of 80
feet per second, sees a freight train 1,000 feet ahead traveling in the same
direction at the constant rate of 10 feet per second on the same track.

He applies the brakes which produce a deceleration of 2.4 feet/second.
2

Will there be a collision, and if so, when?

9-10. Express 32.2 feet/second
2 in (1) centimeters/second

2
, (2) miles/

hour2
, (3) miles per hour per second, and (4) miles per second per hour.



CHAPTER 10

Projectiles; Centripetal Acceleration

10-1. Velocities and Accelerations Are Vector Quantities.

Technically it is permissible to speak of a speed, not a velocity, cf

twenty miles per hour. A velocity of twenty miles per hour must be

spoken of as proceeding in some definite direction, such as due

north. We could speak of two opposite velocities, but it would be

meaningless to speak of two opposite speeds. We can find the re-

sultant of two velocities just as we can with any vectors, and we
can resolve a given velocity into two components. An acceleration

is also a vector quantity and has the same direction as the cJtange in

velocity which gives rise to it. When we speak of the acceleration

of gravity, we should at the same time describe its direction as

being vertically downward.

10-2. Projectiles. The problems of the previous chapter in-

volved accelerations in the same line with the velocities; for example,
vertical velocities and vertical accelerations. In practice, however,
these cases are comparatively rare. The path of a baseball or

projectile from a gun is almost never confined to a vertical direction.

Nevertheless, any velocity may be resolved into two components,
one of which is exactly vertical and the other horizontal, and the

methods of the previous chapter may then be applied to the vertical

and horizontal components separately. We call problems of this

type "projectile problems."

83
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10-3. A Simple Projectile Problem. Let us now consider a type of

motion such as would be experienced by a bag of sand dropped from a

dirigible which is flying eastward at the rate of 80 feet per second.

We shall as usual neglect the effect of air resistance. Since the effect of

gravity is vertically downward, there will be nothing either to increase or

decrease the horizontal component of the subsequent velocity of the bag of

sand. As just indicated, all problems of this type may be separated into

Figure 10-1.

two parts, one dealing with the vertical motion and the other dealing with

the horizontal motion. Let the dirigible and the bag of sand be considered

as being at the origin of a set of coordinates (see figure 10-1) at the instant

that the bag is dropped, where the X-axis is horizontally eastward and the

F-axis is vertically upward. Let the problem be to find the value of x and y
after three seconds, also to find the speed of the bag of sand at that time.

The bag may be considered as doing two things at once. It is a freely falling

body as far as the vertical part of its motion is concerned, and as far as the

horizontal part of its motion is concerned, it is drifting eastward at the rate

of 80 feet per second, and in fact remains directly under the dirigible. Let

us discuss the vertical part of the problem first. Since the bag is merely
dropped and not thrown down, the initial velocity, ,

is zero, a = 32.2

feet/second
2
,
t = 3 seconds. We want v and s (which we shall call y) in this

problem. To find v, use the equation that does not contain 5 (equation (a),

section 9-7). v = + ( 32.2) (3). Therefore v = 96.6 ft./sec. s may be

found from equation (b). y = 3 (- 96.6 + 0)/2. Therefore y = - 144.9

feet. Now solve the horizontal part of the problem, u and v are both 80
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ft./sec.> a = 0, and / = 3. s will be called x. Either equation (b) or (d)

will give us x = 240 feet. The resultant of a velocity vertically downward
of 96.6 ft./sec. and a velocity horizontally eastward of 80 ft./sec. is found

by the Pythagorean theorem to be 125.4 feet per second.

10-4. A More General Projectile Problem. A projectile is shot at an

angle of 30 degrees above the horizontal with a muzzle velocity of 2,000

feet per second. When and where will it again return to the same hori-

zontal level?

Again draw a set of coordinate axes (figure 10-2) and let the projectile

start from the origin 0. It is again necessary to split the problem into a

vertical and a horizontal part (since there is a vertical but no horizontal

acceleration); therefore we begin by resolving the initial velocity into two

components. The horizontal component is 1,732 ft./sec. and the vertical

component is 1,000 ft./sec. (see figure 7-5). Solve first the vertical problem.
u = + l,000ft./sec.;z; = -

1,000 ft./sec.; a = - 32.2 ft./sec.
2

;
s = y = 0.

/ is unknown. Using equation (d) of section Q-7, we have = 1,000 +
i(
-

32.2)/
2

. This may be written = t (1,000
-

16.1*). There are two

1732. ft/sec. X*107,&00ft
y-o

Figure 10-2.

\

solutions, / = 0, and / = 1,000/16.1 or / = 62.1 seconds. The first solution

simply means that when t = 0, the projectile starts from the origin where

y = (). But it again returns to y = when t 62.1

seconds, which is one of the answers we seek.

This result could also be obtained by finding the

time necessary to make half of the trip and then

doubling it. The details would be as follows. For
the vertical motion during the first half of the trip,

u = 1,000 ft./sec., v = 0, and a = 32.2 ft./sec.
2

From equation (a), section 9-7, we can find /. Sub-

stituting, we have = 1,000 + ( 32.2) t and
t = 31.1 seconds. Since this is the time for half the

trip, the whole trip requires 62.2 seconds, which
checks the previous work to the degree of precision
to which we are working. In the horizontal prob-

lem, u = v = 1,732 ft./sec.; a = 0; / = 62.2 sec.;

and 5 (
= x) is our unknown. Equation (d) gives

us x = (1,732) (62.2) + = 107,600 feet. The value of h in figure 10-2

may be found as follows. Again we are solving a vertical problem, u =
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1,000 ft./sec.; v = 0; a = - 32.2 ft./sec.
2 By this time we know that / is

31.1 seconds, but let us not make use of this information. This means that

we shall use the equation that does not contain /, namely equation (c),

section 9-7. This gives us (2) (
-

32.2) (s)
= 02 - 1,0002. Therefore

s = 1,000,000/64.4 = 15,530 feet. This is the maximum height, h, attained

by the projectile. The curve followed by the projectile in figure 10-2 is

called a parabola.

10-5. Centripetal Acceleration. Thus far our accelerations

have either been in the same direction as the velocity itself, or at

least in the direction of some component of the velocity. But now
we wish to discuss the case when the acceleration is always at right

angles to the velocity and in which there is no component of the

velocity in the direction of the

acceleration. This is the case when
the motion is in a circle; the accel-

eration is then called radial, or

central, or centripetal. The centrip-

etal acceleration does not change
the component of the velocity in

the direction of the motion, but

creates a component at right

angles, so that the resultant veloc-

ity steadily changes in direction

but not in magnitude.
Consider a body at A in figure

10-3 with a velocity in the direc-

tion of the vector AB. In time /,

the body would travel a straight

distance vl represented by the arrow AB, and leave the circum-

ference of the circle. But if at each instant it were subject to an

acceleration a toward the center of the circle, then in time / it would

travel a distance ^ at
2 toward the center, according to equation (d)

of section 9-7, since u in this direction is zero; this distance is repre-

sented in the figure by the arrow AC. The resultant of the dis-

placements AB and AC is AD. The problem is to find the correct

value of the acceleration a so that the point D shall lie on the cir-

cumference. Furthermore, the instant that A has moved to a dif-

ferent point on the circumference, such as D, a new diagram must
be drawn with a new acceleration pointing from D toward the center.

That is, the point D must be infinitely close to A, and the time t

therefore must be infinitely small, so that the body shall always
remain on the circumference of the circle.

Figure 10-3.
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In figure 10-3, ABCD is a parallelogram, and ACD is a right

triangle, since AB, and therefore DC, is perpendicular to the dia-

ameter, AE. (A tangent to a circle is perpendicular to the diameter

through the point of tangency). Since the angle ADE is inscribed

in a semicircle, it is also a right angle. Since the angles of triangle

ADC and triangle DCE are equal, triangles ADC and DCE are

similar and their sides are therefore prooortional. It is therefore

true that

AC = CD
CD CE

AC=\ a/
2

;
CD = AB =

vt; and CE = 2r - J a/
2

. Substituting

these values into the proportion, we have

vt 2r \ aft

Equating the product of the extremes to the product of the means

gives us
raft - J <z

2 /4 = fl
2 ft

Dividing through by /
2

simplifies the equation to

ra a2 ft = v2

Remembering now that these relations hold only when / is infinitely

small, we set / equal to zero and divide both sides of the equation

by r and obtain

That is, the centripetal acceleration is always
directed toward the center of the circle and has

a magnitude found by dividing the square of

the speed of the object in its circular path by
the radius of the circle.

10-6. Problems Illustrating Centripetal Accelera-

tion. (A) A locomotive is rounding a curve the

radius of which is 500 feet, at a speed of 30 miles per hour. What is the

centripetal acceleration?

We have seen that 30 miles per hour is the same as 44 feet per second.

We therefore substitute v = 44 feet/second and r = 500 feet into the

equation a = v2/r and obtain

442

Therefore the centripetal acceleration is 1,936/500 or 3.87 feet/second
2

.

If there is any doubt about the proper units in which to express the result
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of a series of algebraic operations, the best procedure is to put the units

into the equation along with the numbers. In this case the numerator is

(44 feet/second)
2 or 1,936 feet2/second2 . Since we are dividing this

numerator by the denominator consisting of 500 feet, the feet in the

denominator partially cancel the feet2 of the numerator, and the final

unit is thus feet/second2 ,
as we should expect for a unit of acceleration

in the English system. It is important for the stability of the locomotive

that the centripetal acceleration be small compared with the acceleration

of gravity, otherwise the track must be banked.

(B) An automobile goes over a slight convexity in the road at the rate

of 60 miles per hour. What must be the radius of curvature of the hummock
at its highest point so that gravity will just hold the car to the road?

According to the conditions of the problem the car is just about to leave

the road for an instant and become a projectile. As a projectile it is subject
to the acceleration of gravity, 32.2 feet/second

2
vertically downward; on

the other hand, if it is barely to follow the curvature of the hummock in the

road, the centripetal acceleration must be iP/r. Therefore these two
accelerations may be equated, and we may at the same time fill in the

numerical value of the speed, which is 60 miles/hour or 88 feet/second.
This gives us

32.2 =^
Solving for r, the radius of curvature of the hummock, we obtain r =
882/32.2 = 7,740/32.2 = 240 feet. It is doubtful if this would be called

a hummock at all.

SUMMARY OF CHAPTER 10.

Since velocities are vector quantities, the velocity of a projectile may
be resolved into vertical and horizontal components, thus splitting such a

problem into two parts with nothing in common but the time element.

Since acclerations are likewise vector quantities, it is possible for the

acceleration to be at right angles to the velocity.

Centripetal Acceleration. An acceleration toward the center of a circle

accompanying a velocity tangent to the circumference. Its value is

2,2

PROBLEMS.

10-1. A projectile is discharged horizontally from a gun located on a

hilltop, with a speed of 2,000 feet per second. Find the position of the pro-

jectile 10 seconds later.

10-2. In the preceding problem, find the horizontal and vertical com-

ponents of the velocity of the projectile 10 seconds after discharge; also find

the resultant velocity.

10-3. Find the position and velocity of a projectile 10 seconds after

being discharged at an angle of 45 degrees above the horizontal with a
muzzle velocity of 2,000 feet per second.
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10-4. A certain long-range gun has a muzzle speed of 4,000 feet per
second. Find the maximum height reached by the projectile, also the hori-

zontal range, assuming the angle of elevation to be 45 degrees.

10-5. A body slides from rest 20 feet down a roof inclined 30 degrees to

the horizontal with an acceleration of 16 feet per second2
,
and then falls to

the ground, 30 feet below. Just where will the body land?

10-6. With what horizontal velocity must a boy throw a paper bag full of

water to hit a cat 20 feet below his window and 10 feet from the base of the

building? As usual, neglect wind resistance.

10-7. If friction will allow a centripetal acceleration of 25 feet per
second2 ,

find the maximum speed with which an automobile can make a

90-degree turn with a radius of curvature of 20 feet.

10-8. Find the radial acceleration of an apple which is being whirled on
the end of a string in a horizontal circle of 60 centimeters radius, if it takes

1.6 seconds to make a round trip.

10-9. A body moving in a circle of radius r feet, makes n round trips per
second. Show that its speed, v, is 2irrn feet per second. Also show
that its centripetal acceleration is 4



CHAPTER I I

Newton's Second Law

11-1. The Cause of Acceleration. Accelerations are caused by
unbalanced forces. Up to this point we have been rather fussy about

having our forces balanced since we have usually desired equilibrium;
but in the absence of equilibrium there is always accelerated motion.

We shall find a similar situation when we come to discuss rotatory

motion; when the torques are unbalanced there will be a loss of

rotatory equilibrium and a consequent angular acceleration.

11-2. Newton's Second Law. Newton's first law (see sec-

tion 2-2) tells us that when the forces acting on an object in a given
direction add to zero, that the acceleration in that direction is also

zero; that is, if the body is at rest it will remain at rest, and if it is in

motion it will remain in motion with uniform velocity. Newton's

second law states that if the forces acting on a body do not add

vectorially to zero, then the body will change velocity in such a way
that the acceleration will be proportional to the vector sum of the

forces, and in that direction. The proportionality factor is the

"mass." A word of caution is necessary in this connection; we are so

accustomed in everyday life to find the forces that we exert balanced

by friction (in which case the algebraic sum of the forces is zero)
that we get into the habit of thinking of a force as producing a

velocity rather than an acceleration. But when the sura of the forces

90
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10 Ib. Mass

,
10 Ib. Force

Figure 11-1.

is not equal to zero, then at least one of the forces is "unbalanced."

We shall take the expressions "unbalanced force" and "vector sum
of the forces" to mean exactly the same

thing. Thus, if there is an unbalanced

force, the velocity is never uniform, but

there is always an acceleration in the direc-

tion of the unbalanced force.

11-3. Illustrations. Consider in figure 11-1

a 10-pound force acting on a 10-pound mass.

In reality this represents nothing more than a

10-pound body in mid-air with no force acting
other than the 10-pound pull of gravity, ordi-

narily called the weight. Under these condi-

tions we know that the body will be falling

with the acceleration of gravity, g (32.2 ft./scc.
2
). We can make the

general remark that when the sum of the forces acting on the body is

numerically equal to the weight of the body, the

acceleration will always be g (32.2 ft./sec.
2
), not

necessarily downward, but in the direction of the

resultant force. The acceleration would still be g
if we added a 5-pound force downward and a 5-

pound force upward. The sum of the forces would

still be 10 pounds downward and would be equal
to the weight. If, on the other hand, we add to

figure 11-1 a 5-pound upward force (figure 11-2),

the vector sum of the forces (which in this case is

also the algebraic sum) now becomes 5 pounds
downward, or half of the weight. Under these

Figure 11-2. conditions the acceleration is reduced to half the

acceleration of gravity, 16.1 ft./sec.
2

,
still in the

direction of the resultant of the forces (downward). In figure 11-3, the

quantity of matter in the body is 10 pounds; the weight or force of gravity

is also 10 pounds. The body is resting upon a horizontal surface which

a = 3*.* ft/sec
1

bib. Force

10 Ib force

$ Ikxlfnction)

10 Ib. tnass

15 Ib. pull

I,

10 Ib.
weight

Figure 1 1 -3.
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supports it with an upward force of 10 pounds, called the normal force.

A 15-pound force acts toward the right and is opposed by a 5-pound
force of friction. The algebraic sum of the vertical forces is zero, and the

algebraic sum of the horizontal forces is 10 pounds toward the right. The
vector sum of all the forces is therefore 10 pounds toward the right, or

numerically the same as the weight. The acceleration will therefore be

32.2 ft./sec.
2 toward the right; that is, the body will behave as if it were

"freely falling" toward the right instead of downward. For instance, if its

velocity at a certain moment is 100 ft./sec. toward the right, then one

second later the velocity will be 132.2 ft./sec. in the same direction.

11-4. Formulation of Newton's Second Law. The acceler-

ations that a body will experience are proportional to the resultant

forces that may act; this fact may be expressed algebraically as

follows p a

F*
=
U

This equation states that if a force, F, produces an acceleration, a,

in a certain body, then a force, F', will produce an acceleration,

a', where F and F' are proportional to a and a'. Fortunately we

already know that one particular force, W ,
the weight of the body,

will produce the particular acceleration, g, so that a special form of

the equation is p a

~W~7 (a)

The F in the numerator is understood to be the vector sum of all the

forces that actually act on the body.

11-5. Illustrative Problems. (1) Assume that the automobile referred

to in section 9-2 weighs 3,000 pounds and experiences resisting forces to the

extent of 400 pounds. With what force are the drive wheels pushing back-

ward on the road?

By Newton's third law, the road pushes forward on the drive wheels

with a force equal and opposite to that asked for in this problem, and since

all the forces involved in Newton's second law must act on the same body,
we shall have to use this forward force. Call the force X. Since there is no

vertical acceleration, the sum of the vertical forces must be zero and we
need give them no further consideration. The sum of the horizontal forces

acting on the car are then the unknown forward force, X, and the back-

ward frictional forces which total 400 pounds. Thus F in equation (a)

is X 400. Applying the equation which expresses Newton's second law,

we have (X - 400)/3,000 = 4.40/32.2. Solving for X we obtain 810

pounds. In this type of problem, it is usually simplest to adopt as positive

the direction of the acceleration.

(2) Anyone who has tried stepping about in an elevator that is speeding

up or slowing down has experienced peculiar sensations of unusual lightness

or heaviness of body according to the direction of the acceleration. Find the

force with which a 200-pound man pushes down on the floor of an elevator
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ZT6WL

(1) as it starts upward from the ground floor with an acceleration of

4 ft./sec.
2

; (2) as it nears the top floor and experiences a deceleration

of 4 ft./sec.
2

As in the preceding problem, instead of the force exerted by the man on
the elevator floor, since we wish all our forces to act on the man, we shall

consider the upward force exerted by the floor on the man, and call this force

X in part (1) and X' in part (2) of our present problem. In part (1) the

acceleration is upward, therefore this will be taken as the positive direction.

There are two forces acting upon the man during the acceleration, the up-
ward (positive) force X, and the downward force of gravity, 200 pounds.
Therefore F of equation (a) of section 11-4 is X 200. Our equation is

then (X -
200)/200 = 4/32.2, and X = 225 pounds. In part (2) of our

problem, the acceleration is down-

ward, so we shall consider the

downward direction as positive.

The equation is therefore (200
- Ar'/200 = 4/32.2 and X' =
175 pounds. Instead of merely

substituting values into equation

(a) of section 11-4, as we have
been doing, it is possible to set up
the proportion directly by argu-

ing somewhat as follows: if the

man in part (2) of our problem
were up in midair with no force

acting upon him but gravity, his

acceleration would be 32.2 ft./sec.
2

but with a total force of 200 - X',

he will experience an acceleration

of 4 ft./sec.
2 which has the same

relation to 32.2 as 200 - X' has Figure 11-4.

to his weight of 200 pounds. This

shows immediately just why the quantity 32.2 always appears in these

equations.

(3) A device invented by George Atwood of Trinity College, Cambridge,

England in 1784 is shown in figure 11-4, and is called Atwood's machine. It

is essentially a device for "diluting" gravity. Over a pulley, so light that its

weight may be neglected, is passed a light cord, one end of which is attached

to a 100-gram weight, and the other end to a 110-gram weight. Find the

acceleration of the moving system and the tension in the cord.

Our common sense tells us that the 100 grams will go up, the 110 grams

down, and that therefore the tension in the cord is more than 100 grams and
less than 110 grams. Since we are now using metric units, g is 980 cm./sec.

2

Since the tension in the cord, T, is the force that the cord exerts on each

weight, the forces acting on the 100-gram weight are T and 100 grams;
and the forces on the other weight are T and +110 grams. Therefore

the equation for the 100-gram weight is (T - 100)/100 = a/980, and for

the 110-gram weight, (110
- T)/100 = a/980. Equating the two left-hand

force
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sides, we obtain an equation that can be solved for T and find that T =
104.8 grams. The first equation then reduces to 4.8/100 = a/980, which

gives a 46.9 cm./sec.
2

The "light pulley" has zero translatory motion since its center of gravity
remains at rest. It may therefore be assumed that the upward forces on the

pulley balance the downward forces. Since the only forces acting down on

the pulley are those exerted by the cord, namely, two forces of 104.8 grams
each, it follows that the upward force on the center of the pulley is 209.6

grams, that is, less than the sum of the two weights. If the two weights
were not subject to an acceleration, that is, if we clamped the system so

that everything were in equilibrium, this upward force on the center of the

pulley would become 210 grams.

11-6. Mass. Another way of writing the equation for New-
ton's second law follows directly from the proportion above:

(W\=
[

la\/
This combination of W in the numerator and g in the denominator

has occurred before in the expression of kinetic energy (see section

3-6). It is customary to call it mass] that is, the mass of a body is

technically its weight divided by the acceleration of gravity. The

equation is a convenient description of the quantity of matter present
in the body because in places where the weight is small, such as near

the poles or at high altitudes, g is also small in the same proportion,
so that although the weight of a body varies from place to place,

the ratio W/g is constant; therefore the mass is, under ordinary

circumstances, practically constant for a given body. Newton's

second law may thus be written

resultant of the forces = (mass) (acceleration)

or F = ma

In the case of a freely falling body, where the only force acting is

the weight of the body, this equation becomes

weight = (mass) (acceleration of gravity)

or W = mg

11-7. Inertia. We have seen that at any one point on the

surface of the earth, mass is proportional to weight; is there any
other property of matter to which mass may be related? Yes!

There is the property of matter known as inertia, which is that

property of matter which makes it necessary to apply a force when
we wish the body to become accelerated. A negative way of de-

scribing the property of inertia is to say that if we do not apply a

force we have no acceleration, and the body remains at rest if it is at



11-8] NEWTON'S SECOND LAW 95

rest, or if it is in motion, remains in motion with uniform velocity.

The next question is naturally, "How can inertia be measured?"

Since inertia is the property of matter that makes it necessary to

apply a force to produce a given acceleration, inertia is to be meas-

ured as the ratio of the force acting to the acceleration produced;
inertia = F/a. But we have seen that this is exactly what mass is.

We have not merely related mass to inertia, we have actually identi-

fied the two, so that from here on, if we wish, we may use the terms

mass and inertia interchangeably; all units of mass are also units

of inertia.

11-8. Engineering Units and Absolute Units. From the

point of view of the engineer, mass is a more or less artificial concept;
he prefers to base all his mechanical units on three fundamental

concepts, namely, length, time, and force. For example, velocity

and acceleration units are derived from the ideas of length and time

alone; a weight is a force; energy is the product of force and length;

power involves all three, force, length, and time; mass likewise,

being the ratio of weight to the acceleration of gravity, involves

force, length, and time. On the other hand, theoretical physicists

prefer to work with what are called "absolute units.
1 '

For this

purpose, the three fundamental concepts are mass, length, and time;

that is, the idea of mass is to the theoretical physicist fundamental,
and force is a derived concept.

Since this book is written from the engineering standpoint, not

much will be said about mass, nevertheless it will be understood

that wherever the ratio (W/g) occurs in an equation, it may be

replaced by the single letter m, and after this is done, absolute units

may be used in the equation instead of engineering or gravitational

units, as they are often called. The next section may therefore be

omitted by the student who is interested only in engineering physics.

11-9. Systems of Units. In engineering work it is not necessary to

worry about units. If there is any doubt about whether the units used are

correct or not, it is merely necessary to insert the units into the equations

along with the numerical values, and if the units are correct, they may be

cancelled in pairs from the entire equation. On the other hand, when an

absolute system of units is being used, forces and masses both appear in the

equations, and it is necessary that they be given different units.

To show how this works out, it will be convenient to discuss four dif-

ferent systems of units: two engineering systems and two absolute systems.
These will be called respectively, (1) the English engineering system, (2) the

metric engineering system, (3) the English absolute system, and (4) the

M.K.S. system. There was formerly a fifth system called the c.g.s. system.
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In 1935 the International Committee on Weights and Measures decreed

that in January, 1940, this system should be replaced by the M.K.S. system,
but scientists, like other people, are conservative, and it may be many years
before the c.g.s. system falls into disuse. Therefore in the remainder of this

section we shall include all five systems.

The kilogram mass is defined as the mass of a certain block of platinum
called the standard kilogram, preserved at the International Bureau of

Weights and Measures, near Paris, France. A kilogram force is the weight of

a kilogram mass, and since this varies from place to place on the surface of

the earth, the kilogram force is not a definite force. In the United States,

by act of Congress, the pound mass is defined in terms of the mass of the

standard kilogram, but in England the pound mass is the mass of a certain

block of platinum preserved at the Standards Office in Westminster, London.
Thus it is that the United States pound and the British pound, though
intended to be alike, are actually slightly different. The standard pound
force is the weight of the standard pound mass at sea level and at 45 degrees
north latitude, and therefore, unlike the kilogram force, the pound force is

a definite force. The acceleration of gravity, g, has been determined at sea

level at 45 degrees north latitude to be 32.1740 feet per second2 .

In system (1), in the United States, the foot, the unit of length, is defined

as 1,200/3,937 of the standard meter; the second, the unit of time, is

1/86,400 of a mean solar day; and the pound force is the weight of the

United States pound mass at sea level and at 45 degrees north latitude.

Although there is no fundamental unit of mass in this system, one may be

derived from the other units in accordance with the relation W = mg.

Thus, if we take the unit of mass in this system to be 32.1740 times the

mass of the United States pound and call it "one slug," then we can sub-

stitute into the equation W = mg the values: W = 32.1740 pounds of

force, m = 1.00000 slug, and g
= 32.1740 feet/second

2
,
and the numerical

values check. But in order to make the units check, it is necessary to think

of the pound force and the slug as related by the equation: pound force

equals slug-feet per second squared.

In system (2) the kilogram is taken as the unit of force, the meter as the

unit of length, and the second as the unit of time. A derived unit of mass

may be created and called the metric slug. Using the arguments of the pre-

vious paragraph, the mass of the metric slug would have to be 9.80 times

the mass of a kilogram.

System (3) is used considerably in textbooks. It has the same units of

length and time as the English engineering system, but differs in that it has

a fundamental unit of mass, the pound mass, and a derived unit of force, the

poundal. The poundal is the force that is necessary to give an acceleration

of one foot per second per second to a mass of one pound. In this system,

weight, being a force, must be measured in poundals. To find the weight of

a pound mass in poundals, substitute in the equation W = mg as follows:

m = 1.000 pound, and g = 32.2 feet/second2 ,
therefore W in poundals

equals 32.2. If we try to find the weight of a pound mass in poundals at a

place where g is slightly different, the result will be slightly different,

namely, the new value of g.
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System (4), the M.K.S. system, uses the meter as the unit of length; the

second, or 1/86,400 of the mean solar day, as the unit of time; and the mass
of the standard kilogram as the unit of mass. The standard meter is defined

as the distance between two fine lines engraved on a platinum-iridium bar

kept at the above mentioned International Bureau of Weights and Measures

at Sevres, near Paris, France. The derived unit of force is the newton, de-

fined as the force which will produce an acceleration of one meter per second

per second in a mass of one kilogram. By the arguments of the previous

paragraph, we discover that the weight of a kilogram mass is 9.80 newtons

at a place where the acceleration of gravity is 9.80 meters per second per
second. This system will be found to fit nicely into the practical electrical

system of units. The newton-meter is a joule; the newton-meter per second

is a watt. Other electrical units belonging to this system such as the volt,

ampere, ohm, and so on will be discussed later.

In the c.g.s. system the centimeter, the unit of length, is one hundredth

of a meter; the gram, the unit of mass, is one thousandth of a kilogram; and
the dyne, the unit of force, is one hundred-thousandth of a newton. It is

like a toy system, useful chiefly in dealing with small quantities. Yet,

ironically enough, its units are too large when we deal with atomic entities.

The approximate relative magnitudes of these units of mass and force,

jumbling them together rather indiscriminately, may be seen from the

following table:

980 dynes = 1 gram
454 grams = 1 pound

1,000 grams = \ kilogram

9.80 newtons = 1 kilogram

0.80 kilograms = 1 metric slug

32.2 poundals = 1 pound
32.2 pounds = 1 slug

The various units discussed in this section may be arranged as in the

following table, where the derived units appear in parentheses.

System Time Length Mass Force Weight

(1) English engineering second foot (slug) pound pound

(2) Metric engineering second meter (metric slug) kilogram kilogram

(3) English absolute second foot pound (poundal) (poundal)

(4) Kilogram-meter-
second second meter kilogram (newton) (newton)

(5) C.g.s. second cm. gram (dyne) (dyne)

11-10. Kinetic Energy. (See section 3-6.) By equation (c) in

section 9-7, if a body drops a vertical distance, h, from rest, with the

acceleration of gravity, g, the square of its velocity will be 2gh down-

ward. In this case h = v
2

/2g. Utilizing the law of conservation of

energy, we can say that the potential energy (Wh, or mgti) at the

height h, will be converted into an equal amount of kinetic energy,
Wv2

/2g or mv2
/2, after dropping the distance h. The kinetic energy
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depends only on the numerical values of the mass and the velocity,

and will have the same value whatever the 'direction of the velocity.

It is therefore not a vector quantity.

11-11. Illustrative Problems (4). As an illustration of the equation,
F = ma, let us do again problem (1) which has already been solved in sec-

tion 11-5. Since the weight of the automobile is 3,000 pounds, its mass is

3,000/32.2 or 93.2 slugs. The sum of the forces still is correctly expressed
as X 400 pounds. And the acceleration is 4.4 feet/second

2
. Therefore

when we substitute in the equation, we have X 400 = (93.2) (4.4), and
the solution is still 810 pounds.

(5) On a smooth roof inclined 30 degrees to the horizontal, an object is

placed 32 feet from the eaves arid released. The eaves are 80 feet above the

ground. How long does it take the object (a) to slide to the eaves, and (b)

to reach the ground? (c) Where will it strike the ground, and (d) what

velocity will it have just before it strikes?

(a) When the roof is described as "smooth" the interpretation is that

the coefficient of friction is zero. Referring to figure 11-5, the weight is

resolved into two components, one perpendicular to the roof and the other

parallel. Since we are dealing with a 30-degree right triangle, the com-

ponent, F, parallel to the roof is just half of the weight, and this is the only
force parallel to the motion; that is, it is the sum of the forces in this case.

When we substitute values into the

equation

W g

we see that since on the left the nu-

merator is just half of the denomi-

minator; the same will have to be true

on the right; therefore, a = 16.1

feet/second
2

. During the motion

down to the eaves we have the fol-

lowing data
Figure 1 1 -5.

a = 16.1 feet/second
2

s = 32 feet

t = ?

u =
v = ?

Equation (c) of section 9-7 does not contain t; we can therefore use it to

solve for v. Substituting in the data, we obtain

(2) (16.1) (32) = v2 - O2

Solving gives us v2 = 1,030, and v = 32.1 feet per second. Equation (a) of

section 9-7 now gives us t

32.1 = + 16.1 t

Solving, we find that / = 1.994 seconds.
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(b) From this point on, we have a projectile problem on our hands; it is

therefore necessary to consider separately the vertical and the horizontal

part of the motion. First resolve the velocity at the eaves, 32.1 feet per

second, 30 degrees below the horizontal, into vertical and horizontal

components. By figure 7-5, the vertical component is (0.5) (32.1) or

16.0 feet/second downward, and the horizontal component is (0.866) (32.1)

or 27.8 feet/second. The data for the vertical part of the problem line

up as follows.

a = 32.2 feet/second
2

s = 80 feet

t = ?

u = 16.0 feet/second

v = ?

Since we have the same set of unknowns as in part (a), the procedure will be

the same. Equation (c), section 9-7, gives us

(2) (32.2) (80)
= it - (16.0)2

v2 = 5,150 + 256 = 5,410, and v = 73.6 feet/second. Then equation (a),

section 9-7, becomes
73.6 = 16.0 + 32.2 /

From this, * = (73.6
-

16.0)/32.2 = 57.6/32.2 = 1.789 seconds.

(c) In order to find where the object will strike the ground, it is only

necessary to multiply the horizontal component of the velocity as the object
leaves the roof, 27.8 feet/second, by the time it is in the air, 1.789 seconds.

The product is 49.7 feet, the horizontal distance from the building.

(d) The velocity of the body just as it reaches the ground is the re-

sultant of the horizontal component, 27.8 feet per second, and the vertical

component, 73.6 feet/second. Squaring these and adding, we have 773 +
5,410 = 6,180. Extracting the square root, we find the resultant to be 78.6

feet/second. The result could also have been obtained graphically by
drawing the figure to scale and measuring the diagonal; the result may in

this way be obtained to the same degree of accuracy as by the use of the

slide-rule. If the figure has been drawn, we can measure the angle between

the resultant and the vertical with a protractor and find it to be 20 42'.

The angle may also be found trigonometrically either from the fact that its

tangent is 27.8/73.6 (or 0.378) or from the fact that its sine is 27.8/78.6

or (0.354).

(6) What centripetal force is necessary to make a 16.1-pound body
revolve in a horizontal circle of one foot radius at the rate of 0.5 revolutions

per second? If the body is supported against gravity and caused to revolve

in this way by means of a cord attached to it, find the tension and length of

the cord.

In order to find the centripetal force we need first the centripetal

acceleration, the expression for which is v2/r. In one second the body will

make just half a revolution. Since the circumference of the circle which

constitutes its path is (2?r) (1) or 6.28 feet, half of this divided by one
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second, the time it takes for a half revolution, is 3.14 feet per second, its

speed. Therefore v*/r is (3.14)
2
/(1) or 9.86 feet/second

3
. We could have

obtained the same result by utilizing a formula developed in problem 10-9,

that is, that the centripetal acceleration is 4 ir
2n?r. In this case the expres-

sion becomes (4) (3.14)
2

(0.5)
2

(1), which also gives us 9.86 feet/second
2

.

Utilizing equation (a) of section 11-4 in which W is 16.1 pounds, a is 9.86

feet/second
2

,
and g is 32.2 feet/second

2
,
we have

F 9.86

16.1 32.2

Solving for the resultant of the forces gives us F = 4.93 pounds, and since

in this case, there is only one force in the direction of the center of the circle,

4.93 pounds is the desired centripetal force. The negative of this force, called

centrifugal force, is a fictitious force which would have to be applied to hold

the body in any of its instantaneous positions if the whirling motion stopped.

In this problem, the body is caused to remain in its horizontal circle by
means of a cord, one end of which is held at a point directly above the center

of the circle and the other end of which is attached to the revolving body.
The tension in this cord, which is always in a slanting position, represents a

slant force exerted on the revolving body. One component of this slant force

supports the weight of the body, 16.1 pounds, and the other component
supplies the centripetal force of 4.93 pounds towards the center of the circle.

The resultant of these two components is the tension we seek. (16. 1)
2 +

(4.93)
2 = (16.84)

2
. Therefore the tension in the cord is 16.84 pounds. If the

student draws the diagram, he will see that it contains two similar triangles

in which the length of the supporting cord is to the radius of the circle as the

tension in the cord is to the centripetal force. If x is the length of the cord,

wehave*/! = 16.84/4.93. Therefore the length of the cord must be 3.42 feet.

SUMMARY OF CHAPTER 1 1

Technical Terms Defined

Mass. Quantity of matter in a body. Represented in engineering ex-

pressions by the ratio of the weight to the acceleration of gravity.

Inertia. A property that matter possesses which makes it necessary to

apply an unbalanced force to a body in order to produce an acceleration

of that body. It is indistinguishable from mass and is measured in mass

units.

Translatory Kinetic Energy. The energy that a body possesses by virtue

of its translatory motion. It is found by multiplying half the mass of

the body by its velocity squared.

Newton's Second Law. Unbalanced forces produce accelerations in a

body; the accelerations are proportional to the resultant force.

The equation:
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PROBLEMS

11-1. A 20-pound body rests on a smooth horizontal surface. If a
certain unbalanced horizontal force moves it 8 feet from rest in one second,
find both the acceleration and the force.

11-2. A 40-pound body rests on a rough horizontal surface such that the
coefficient of friction is 0.2. What acceleration will a horizontal force of 20

pounds produce on the body, and how far will it move the body from rest

in two seconds?

11-3. A 20-pound body rests on a smooth plane inclined at such an

angle that a force of 10 pounds, acting up the plane, is necessary to produce
equilibrium. What force must replace the 10-pound force to cause the 20-

pound body to move up the plane 8 feet from rest in one second with
accelerated motion?

11-4. On a roof inclined 30 degrees to the horizontal, an object is placed
32 feet from the eaves and released. The eaves are 80 feet above the ground.
If the coefficient of friction between the object and the roof is 0.1, how long
does it take the object (1) to slide to the eaves and (2) to reach the ground?
(3) Where will it strike the ground and (4) what velocity will it have on

striking?

11-5. A 161-pound man stands in an elevator while the elevator has a
downward acceleration of 12 feet/second.

2 With what force do his feet push
on the floor of the elevator? Is it necessary for the elevator to be moving
downward for the above situation to occur? If the elevator has an upward
acceleration of 16.1 feet/second

2
,
how hard will his feet push on the

elevator floor?

11-6. A 16-pound body and a 48-pound body are placed side by side on a
smooth horizontal surface and a horizontal force of 32 pounds is applied to

the 16-pound body so as to set both in motion. (1) What acceleration will

be produced? (2) What force will the 16-pound body exert on the 48-pound
body? (3) What force will the 48-pound body exert on the 16-pound body?

11-7. If the coefficient of friction in problem 11-6 is changed from zero

to 0.1, what do the answers become?

11-8. A and B are two objects that each weigh 10 pounds. Show, if A
rests on a smooth horizontal bench 8 feet high, 24 feet from the edge, and is

connected by a 24-foot cord to J3, which is just falling off the edge of the

bench, that B will reach the floor in one second from rest, and A will reach

the edge of the bench in two seconds, striking the floor in 2.71 seconds,

assuming the acceleration of gravity to be 32.0 feet/second
2

.

11-9. A 48-pound weight rests on a horizontal bench which is 4 feet high
with the weight 12 feet from the edge. A 12-foot cord connects this weight
with a 16-pound weight which is just ready to fall from the edge of the

bench. Assuming no friction, how long after the bodies start from rest will

it be when (1) the 16-pound weight strikes the floor, (2) the 48-pound weight
reaches the edge of the bench, and (3) the 48-pound weight reaches the

floor? (4) What are the velocities of the 48-pound weight at these three times?

11-10. Solve the preceding problem, assuming a coefficient of friction of

0.25 between the 48-pound weight and the bench.

11*11. A 16-pound weight and a 48-pound weight hang on opposite ends
of a cord which passes over a light frictionless pulley. Compute (1) the

acceleration of the bodies, (2) the speed they will acquire in one second from
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rest, and (3) the distance each will move during that second. (4) Find the

tension in the cord.

11-12. If, instead of moving vertically, the 48-pound weight of the pre-

ceding problem moves down a smooth plane inclined at 30 degrees to the

horizontal, with the cord now pulling parallel to the plane, what accelera-

tion will the 16-pound weight (still hanging vertically) now have?

11-13. If in the preceding problem the coefficient of friction between the

48-pound weight and the plane is assumed to be 0.175, what will the re-

sulting acceleration of the 16-pound weight become?

11-14. Prove (1) that 1 newton = 1 kilogram-meter/second
2 and (2)

that 1 slug
= 1 pound-second

2
/foot.

11-15. If a 3,220-pound automobile is rounding a curve of 100 yards
horizontal radius while traveling at a speed of 30 miles per hour, compute
(1) the necessary centripetal force, (2) the vertical components of the force

which the road exerts upon the automobile, and (3) the resultant force

which the road exerts upon the automobile. For maximum stability (that is,

no tendency for the automobile to slip either to the inside or to the outside

edge of the curve) the surface of the road should be perpendicular to this

resultant. This makes the angle of banking (the angle between the surface

of the road and the horizontal) equal to the angle between the resultant

force found in (3) and the vertical. Find (4) the angle of banking.
11-16. A pail of water is rotating about a vertical axis through its center

at such a rate that four inches from the axis the surface of the water slants

at an angle of 45 degrees with the horizontal. How many rotations per
second is the pail making?



CHAPTER 12

Angular Acceleration; Gyroscope

12-1. Units of Angle. We are now about to apply the laws of

accelerated motion to rotatory motion. In this connection it is

rather startling to discover that there are seven distinct units of

angle all in common use. The system of degrees, minutes, and

seconds is well known. The quadrant (90 degrees) and the revolution

(360 degrees) likewise need no introduction. Many modern military

instruments are now graduated in mils, where the mil is 1/1600 of a

quadrant. This is particularly convenient for range finders; for ex-

ample, if an automobile known to be 15 feet long subtends at the

eye an angle of 5 mils, it is about 3,000 feet away. If the angle sub-

tended is 2.5 mils, it is 6,000 feet away. The rule is to divide the

known length of the object by the number of mils subtended and

multiply by 1,000.

The mathematician's favorite unit of angle is the radian, which

is about 57.3 degrees. This peculiar number is obtained by dividing
180 degrees by TT (TT

= 3.14159 ). The reason for this procedure
is due to the following argument. Let two lines, AB and CD,
intersect at O. With center at O, describe an arc intersecting the two

lines at P and Q (see figure 12-1). If the magnitude of the angle

QOP (angle 0) is such that the length of QP (arc s) is equal to OQ
(radius r), then the angle is said to be one radian. Therefore 3.14

103
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radians (TT radians) equal 180 degrees. The relations between the

various units of angle are as follows:

60 seconds (") = 1 minute (')

60 minutes = 1 degree ()
57.3 degrees = 1 radian

1,600 mils = 1 quadrant
90 degrees = 1 quadrant

360 degrees = 1 revolution

2 TT radians = 1 revolution

The mil is slightly less than one thousandth of a radian. It is custo-

mary to use the revolution as an angular unit when the angle is

large; for example, an angle of 3,600 degrees is 10 revolutions or

20 TT radians (62.8 radians). If a

wheel is turning at the rate of 60

revolutions per second, then in one

minute a revolution counter would

indicate an angle of 3,600 revo-

lutions.

12-2. Angular Speed. A
point is merely a position in space
without dimensions, and hence can-

not rotate. A line, however, is

capable of rotating about any one Figure 12-1.

of its points, and in so doing, cre-

ates an angle between its original and final positions. The rate

at which a line describes an angle is called its angular speed: It is

expressed in terms of a unit formed by dividing a unit of angle by a

unit of time; for example, 10 radians per second, 3,600 revolutions

per minute, 15 degrees per hour, the last being the angular speed of

the earth's rotation.

12-3. Rotatory Motion. In section 8-1 rotatory motion was

described. In pure rotatory motion, the center of gravity lies on the

axis of rotation
; every point in this line is at rest. Consider now any

plane in the body at right angles to the axis. If a line be drawn in

this plane in such a way as to intersect the axis, then during the

rotation, this line moves with an angular speed which we can iden-

tify with the angular speed of the rotating body.
A spinning top usually has a very complicated motion, but at

times the axis of spin remains stationary. The schoolboy describes

the top in this condition as "sleeping," and a sleeping top consti-

tutes a good illustration of pure rotatory motion. On the other hand
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a projectile shot from a rifled gun barrel moves with a combination

of rotatory motion about its center of gravity and translation of the

center of gravity. The projectile problems which we have solved

were concerned only with the motion of the center of gravity.

12-4. Angular Velocity. In rotatory motion, the same dis-

tinction exists between angular speed, a scalar quantity, and angular

velocity, a vector, that we have discovered between linear speed and

linear velocity. We have just seen that a point not on the axis of a

rotating body moves in a plane, following a circular path. If the

center of this path, the orientation of the plane in space, the sense

of the rotation, and the rate of rotation be specified, we know all

there is to be known about the rotation. All these things may be

represented by means of a single arrow, so that angular velocity may
therefore be considered as an ordinary vector quantity. Just how a

single arrow is capable of representing completely the angular

velocity is rather interesting. This could not be done if the arrow

were to lie in the plane of the rotation, because a single line, lying
in a plane, cannot completely determine the position of the plane.

But through a given point, only one plane can be passed perpen-

dicularly to a given line, so that if it be understood that the arrow

shall be drawn from the center of the circular orbit along the axis

of rotation, the orientation of the plane will be completely deter-

mined by the arrow. But the arrow must also show the sense of the

rotation, that is, whether it is clockwise or A
counterclockwise as viewed from the head

of the arrow. We therefore make the con-

vention that the arrow shall be so drawn

that the rotation shall appear counter-

clockwise as viewed from the head of the

arrow (see figure 12-2). And as usual, the

length of the arrow is proportional to the
(

speed of rotation. As an aid to memory,
we may let the fingers of the right hand

represent the rotation, in which case the igure "
'

thumb will indicate the proper direction for the vector representing

the angular velocity.

12-5. Equations of Angular Acceleration. In this book we
shall confine our discussion of angular acceleration to cases in which

the acceleration is uniform. Therefore an angular acceleration may
be defined as the gain in angular velocity in unit time, or in other

words angular acceleration is the ratio of the change in angular
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velocity to the length of time required for the change. As in our

discussion of linear acceleration, we shall require a set of letters

representing the five quantities involved; for this purpose it is custo-

mary to use two more Greek letters. We have already used the

Greek letter thela (0) to designate an angle. Alpha (a) will stand

for angular acceleration, and omega (co) for final angular speed. For

initial angular speed, we shall use co
;
/ will stand for time. Since the

equations are similar to the ones we have already derived, we shall

merely listthem
;
the list should be comparedwith theone in section 9-7.

co =
coo + at (a)

2 a B = cu
2 -

coo
2

(c)

6 =
coo/ + \OL P (d)

As before, one variable is omitted from each equation, 0, a, /, and co

respectively.

12-6. Illustrative Problem. A certain flywheel slows down from 4,800

r.p.m. to 3,600 r.p.m. in ten seconds. Find the angular acceleration and the

number of revolutions made in slowing down.
Use equation (a) to find the acceleration^ because it does not contain 6.

Before substituting in this equation, the time units must be made to agree;
at present we have a mixture of minutes and seconds. Since the problem

specifies that the angle be expressed in revolutions, it is not necessary in

this case to change to radians. But merely to illustrate the process, we shall

solve the problem both in revolutions and in radians. In terms of revolu-

tions, we have wo = 80 revolutions per second, o> = 60 revolutions per sec-

ond, and / = 10 seconds. Therefore equation (a) becomes 60 = 80 a 10.

Solving for a. we find that the angular acceleration is 2 revolutions per
second squared. From equation (b) we can find the number of revolutions;

6 = 10 (60 + 80)/2 = 700 revolutions. The negative acceleration means
a retardation, or deceleration as it is sometimes called.

If the angular acceleration is to be used in some subsequent equation,
it is necessary that it be expressed in radians/second

2
. Therefore we

shall solve the problem again, using the radian as the unit of angle. Since

each revolution is 2 TT radians, then WQ is (80) (2ir) radians per second =
520 radians/second, and co = (60) (2?r)

= 377 radians per second. Equa-
tion (a) now takes the form, 377 = 502 a 10, and a is now 12.50

radians/second
2

. We could also have changed 2 revolutions/second
2

directly into radians/second
2 by multiplying by 2ir, obtaining 12.56

radians/second
2

,
which checks with the other value within the limits of

accuracy to which we are working.

12-7. Relations Between Linear Magnitudes on the Cir-

cumference and the Corresponding Angular Magnitudes
at the Center. From the definition of the radian (see section 12-1
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and figure 12-1) we have seen that the angle 6 is the ratio of the arc 5

to the radius r. When s = r, the ratio is unity and 6 is one radian.

Therefore, since 6 = s/r
s = rd

Similarly, the linear velocity of a point moving along an arc is

related to the angular velocity of the line connecting the moving
point with the center by the equation

v = ro)

And the linear acceleration of a point on the circumference in a

direction tangent to the circumference is related to the angular
acceleration of the line connecting the moving point with the center

by the equation
a = ra

Very frequently angular velocity is represented by the letter n when
the unit is revolutions per second; if it is also understood that co is in

radians per second, then, since there are 2?r radians in a revolution,

it is true that

co = 2 irn

And since v = rco, then
v = 2 irrn

Furthermore, since centripetal, or radial, acceleration, that is, the

linear acceleration of a point on the circumference toward the center

(see section 10-5) is equal to v
2

/r, it is also equal to 4 ?rW/r, or

a = 4

12-8. Illustration Involving Three Types of Acceleration. A flywheel,
10 feet in diameter, starts from rest and in 10 seconds acquires an angular

speed of 1,200 r.p.m. Find the tangential acceleration of a point on the

circumference, the centripetal acceleration of the same point at the end of

10 seconds, and the angular acceleration.

Both the tangential and centripetal accelerations are linear and are

expressed in feet/second
2

;
the angular acceleration will come out in

radians/second
2

. By the end of the 10 seconds, n = 1,200 r.p.m. or 20

revolutions/second, co = 2wn and is therefore 40?r radians per second,
or 125.6 radians/second, and v = rco or (5) (125.6) which is 628 feet/second.

v could also be found from v = 2irrn = (2) (3.14) (5) (20) = 628 feet/sec-

ond. Since it took 10 seconds to acquire this speed of 628 feet/second
from rest, then the acceleration in the direction of the tangent is 62.8

feet/second
2

,
from equation (a), section 9-7.

The centripetal acceleration is the component of linear acceleration at

right angles to the tangent, along the radius toward the center. If it were

not for this acceleration, the point under discussion would move in a straight

line and not follow the circumference of the wheel at all. In order to find the
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radial acceleration, it is necessary to substitute in either the formula, iP/r,

section 10-5, or 4?r2tt2r of the previous section. The first gives 6282/S or

78,800 feet/second
2

;
the second gives 4 (3.14

2
) (20

2
) 5 or 78,800 feet/second

2
,

enormously greater than the tangential component.
A point may have linear acceleration, but only a line may have angular

acceleration; therefore, to solve the third part of the problem, connect the

point in question with the center of rotation. This line describes an angle as

the wheel turns. In this case the angular velocity of the radius is not uni-

form but increases from o?o
= zero to w = 125.6 radians/second in 10

seconds time, therefore the gain in angular velocity per second, or angular

acceleration, is 125.6/10 or 12.56 radians/second2 from equation (a),

section 12-5. As a check we can apply the equation a = rot connecting
the tangential and angular accelerations. This gives 62.8 = (5) (12.56),

which is obviously correct.

12-9. The Gyroscope. Some rather interesting applications

of angular velocity vectors occur in dealing with gyroscopes.
A gyroscope is simply a flywheel

mounted in such a way that it is free

to turn about three different axes, at

right angles to each other. The front

wheel of a bicycle may be taken as an

illustration. Let us consider what

ought to happen if the bicycle rider

turns the handle bars to the right while the wheel is turning. In

accordance with section 12-4, the angular velocity of the wheel,

due to its rotation on its own axis, is represented by a relatively

long horizontal arrow, pointing to the left. The other angular ve-

locity of the wheel, due to the rotation of the handle bars to the

right, is represented by a relatively short arrow pointing nearly

vertically down. Draw the parallelogram of these two vectors and

find the resultant. It will be found that this resultant will be repre-

sented by a long arrow pointing downward to the left. In order

that this may represent the resultant angular velocity of the spinning

wheel, the bicycle must tip to the left. This would be more clearly

recognized if one should remove the front wheel from the frame,
set it spinning, and attempt to give it a twist such as the handle bars

would if turned to the right. As a result, the wheel will almost tear

itself out of one's hands in setting itself to correspond to a bicycle

leaning to the left! As a matter of fact, gyrostatic action constitutes

the usual reason for a bicycle rider steering to the right; he is

starting to fall to the right and wishes to create a torque which
will neutralize the tendency by rotating the bicycle to the left.
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With the spinning bicycle wheel still held in his hands, if the

experimenter whirls himself upon his heel completely around to the

right, the bicycle wheel will continue turning to the left till the

vector representing the rotation of the wheel coincides in direc-

tion with the vector representing the rotation on the heel. This

experiment illustrates in part the principle of the gyrocompass.
A properly mounted rotating flywheel on the rotating earth be-

haves just as the spinning bicycle wheel does in the hands of a

spinning person; that is, it tends to set its axes parallel to the

axis of the rotating earth, north and south. Following the same

principle, the student can see how a gyrostatic stabilizer properly

placed in a ship is able to convert some of the rolling motion into

a pitching motion at right angles to the roll. Since the ship is so

much longer than it is wide, the pitch is less objectionable,

SUMMARY OF CHAPTER 12

Technical Terms Defined

Mil. An angle equal to one sixteen-hundredth of a quadrant.

Radian. An angle subtended by an arc which is equal in length to its

radius; 180 degrees divided by TT.

Angular Speed. The magnitude of the time rate of change of an angle.

A scalar quantity.

Angular Velocity. A complete description of the angular motion of a body
including not only the magnitude of the angular speed but the position of

the axis, also the sense of the rotation. A vector quantity.

Angular Acceleration. Rate of change of angular velocity. This is also a

vector quantity.

Gyroscope. A flywheel mounted so that it is free to rotate about three

different axes at right angles to each other. Its angular velocities may
be combined vectorially.

PROBLEMS

12-1. An automobile, fifteen feet long, is five thousand feet distant from
an observer. What angle does it subtend at the observer in radians? In mils?

12-2. Find the percentage difference between a mil and one thousandth
of a radian.

12-3. A cylinder rotating about its axis with constant angular accelera-

tion makes two complete revolutions from rest in two seconds. Compute
(1) the magnitude of the angular acceleration, (2) the angular speed at the

end of two seconds, and (3) the average angular speed. (4) What other infor-

mation is necessary in order to compute the linear speed of a point on the

cylindrical surface?
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12-4. If a uniformly accelerated rotating body increases its speed from
one revolution per second to two revolutions per second in making three

revolutions, compute (1) the average speed, (2) the time required for this

increase in speed, and (3) the magnitude of the constant acceleration.

Express these answers in terms of both revolutions and radians.

12-5. A rotating body has a constant angular deceleration of 6.28

radians per second squared and makes eight revolutions in two seconds.

Compute, in terms of both revolutions and radians, (1) the initial angular

speed and (2) the final angular speed.

12-6, If in the preceding problem a point in the rotating body is two
feet from the axis of rotation, compute (1) the linear distance it moves

during the eight revolutions, (2) its linear tangential acceleration, (3) its

initial linear speed, (4) its initial radial acceleration, and (5) its initial

resultant linear acceleration.

12-7. Show that centripetal force may be equated to

12-8. The flywheel of an automobile is turning clock-

wise as viewed from the front of the car (if one could see it).

What will the gyrostatic tendency of the flywheel on its

bearings be while the car is turning a corner to the right?

12-9. What is the gyrostatic effect when a boy pushes
the top of a rolling hoop to the right?

12-10. Show how a gyrostatic stabilizer in a ship should

be mounted.

12-11. The slow wabbling of a top is called "precession." If a top is

spinning to the right as viewed from above, will the precession be to the

right or to the left?

12-12. Imagine the motion of the point farthest forward on the bicycle
tire used in the illustration in section 12-9. Due to the rotation of the

wheel, this point has a large linear velocity vertically downward. Due to

the rotation of the handle bars to the right, this point also has a small

horizontal velocity to the right. Find the resultant of the two linear

velocities. What position of the wheel will account for this new (resultant)

velocity?

12-13. If a cylinder three feet in diameter rolls four feet down an in-

clined plane in one second from rest, compute (1) the linear acceleration of

the axis of the cylinder relative to the plane, (2) its final linear velocity
relative to the plane, (3) the final linear velocity of the plane relative to

the axis of the cylinder, and (4) the angular acceleration of the cylinder;

(5) find also the final angular speed of the cylinder.

12-14. In part (3) of the preceding problem, the magnitude of the final

linear velocity of the plane relative to the cylinder is equal to the final

linear tangential speed of every point on the cylindrical surface with ref-

erence to its axis. Find (1) the speed of a point on the cylindrical surface

directly opposite to a point of contact, relative to the plane at this same
instant and (2) the corresponding angular speed of a diameter connecting
these two points. How does the*answer to 12-13 (5) compare with 12-14 (2) ?



CHAPTER 13

Dynamics of Rotation

13-1. Moment of Inertia. Newton 's second law applied to linear

motion states that the sum of the forces applied to a body is pro-

portional to the linear acceleration produced, where the propor-

tionality constant is called the mass or the inertia (see section 11-6).

We can also apply Newton's second law to angular motion; it then

becomes: the sum of the torques, or moments of force, applied to

a body is proportional to the angular acceleration produced, and

the proportionality constant is called the moment of inertia. A mo-

ment of force is the product of a force and a distance, but a moment
of inertia is proportional to the product of an inertia and the square

of a distance. Moment of inertia will be represented by the letter

7, and the resultant torque by the letter L, so that the equation for

Newton's second law when applied to rotation becomes

The fact just mentioned, that

/ = kmr*

can be proved from a consideration of units, or quite directly by
the argument in the following section.

13-2. Derivation of Formula of Moment of Inertia. If we
consider the simplest possible case, it will involve a somewhat hypo-
thetical object. This object will consist of a stiff, weightless rod of

length r, connecting a mass, W/g, which occupies no space, to an

axis. See figure 13-L Throughout the discussion, for brevity, we

111
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shall use m instead of W/g. In the case of this simplified object,

the proportionality constant, k, turns out to be unity, as will be

shown. If the force F were applied directly to the mass m, an

acceleration would be produced in accordance with the formula,
F = ma, so that the acceleration would be F/m. If the force were

applied at the axis, no acceleration at all would be produced. But if

the force is applied at a point P, which is s/r of the distance from

the axis to the mass, then the acceleration will be s/r of the value

F/m, that is, Fs/mr. The angular acceleration of the whole rod is

related to the linear acceleration of the lower end of the rod by the

formula, a = a/r (see section 12-7), therefore the angular accelera-

tion will be Fs/mr
2

. From the previous section, a also equals L/I or

the sum of the torques divided by the moment of inertia. We recog-

nize Fs as the only torque acting about the axis chosen

(product of the force by the perpendicular distance from

the axis; see section 8-3), therefore mr2
is the moment of

inertia of the mass m, when it is r units from the axis,

and the constant k of the preceding paragraph is unity.

Another case when -most of the mass is at a distance r

from the axis of rotation is the flywheel; here an effort is

made to concentrate the mass in the rim as much as pos-

sible, so that for most purposes we may say

Figure 13-1.
W

or Ijiywkeei
= r*

o

A solid cylinder has matter all the way between the axis and

the circumference; the moment of inertia of the matter at the axis

is zero while that at the circumference is mr2
,
so that it is not sur-

prising to find that, taking the cylinder as a whole, the expression be-

comes
/ cylinder

= $Wr2

Since the length of the cylinder does not enter into this formula,

the moment of inertia of a disk is likewise ^ mr2
,

The moment of inertia of a sphere is still less because a still

smaller proportion of the matter lies at the distance of the extreme

radius. In this case the formula is

r 2 o/ sphere
=

J^f
2

The formula for the hollow cylinder involves both the inner

radius r i, and the outer radius r 2 ,
and is

/ hollov cylinder
= Jw(ri

2 + f2
2
)
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If we imagine a case (like a stove pipe) where r \ becomes very close

in value to r^ then (r* + ^2
2
)/2 becomes approximately 2 r

2
/2 or

just r
2 and we get back to the expression for the flywheel where all

the mass is in the rim.

If we make a long slim rod of length / (such as a meter bar) , rotate

about an axis perpendicular to the rod, we obtain

13-3. Units of Moment of Inertia. We could also convince

ourselves that the length must be squared in the expression / =
kmr* by a consideration of the units involved. In the equation,
L = /a, we may express L in pound-feet and a in radians per
second2

. But when an angle is expressed in radians, it is actually

a ratio of an arc to the radius, and therefore a pure number. (See

the first equation of section 12-7.) Therefore if I = L/a, its unit

must be pound-foot-second
2
,
since it is not necessary to.say pound-

foot-second2

/radian. Consider now the units involved in kmr2 or

k(W/g)r
2

',

k is a pure number, W is in pounds, reciprocal g is in

seconds2
/foot, and r

2
is in feet

2
. Taking the product of these, after

making one cancellation, we have again pound-foot-second
2

.

If we use one of the systems of units mentioned in section 11-9,

we could express moment of inertia in slug-feet
2 or kilogram-meters

2
.

It is often convenient to consider moments of inertia of areas in-

stead of masses. When this is done, the m or W/g in the foregoing

formulas become cross-sectional areas perpendicular to the axis of

rotation, and the unit of area moment of inertia is foot4 or meter4

instead of slug-foot
2 or kilogram-meter

2
.

13-4. Illustrative Problem. As an illustration of Newton's second law

applied to rotation, assume the following problem: a grindstone, two feet

in diameter and weighing 100 pounds, is equipped with a crank of six inch

radius. If a steady force of 25 pounds is maintained on this crank at right

angles to the radius, find the resulting angular acceleration.

The sum of the torques about the axis of rotation in this problem is

(25 pounds) (0.5 feet) or 12.5 pound-feet. The moment of inertia is given

by the formula Wr*/2g, or, numerically, (100) (l)
2
/(2) (32.2) or 1.553

pound-feet-second
2

. The angular acceleration, a, is L/I and is therefore

12.5/1.553 or 8 radians per second2 . We could have expressed the angular
acceleration as simply 8/second

2
. That is, dividing 12.5 pound-feet by

1.553 pound-foot-seconds
2

gives 8 seconds"2, 8/second
2

, all three being
the same.

13-5. Work and Energy of Rotation. The product of the

torque and the angle expressed in radians will give the work done
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by the torque on the rotating object, and the kinetic energy of the

rotating object may be found by using the formula

k.e.

This kinetic energy of rotation is to be added to whatever kinetic

energy of translation may be present, to obtain the total kinetic

energy.

13-6. Illustrative Problem. A sphere (figure 13-2), radius two feet,

weight 500 pounds, rolls down a 100-foot plane inclined 30 degrees with the

Figure 13-2.

horizontal. If it starts from rest at the top of the plane, what is its angular

speed at the bottom of the plane?

By comparison with figure 7-5, we see that the vertical height of one end
of the plane compared with the other is 50 feet. Therefore the potential

energy of the sphere at the top of the plane is Wh, or in this case, (500

pounds) (50 feet) or 25,000 foot-pounds. Since the sphere is at rest at the

top of the plane, it has neither translatory kinetic energy, (1/2) (W/g)v%, nor

rotatory kinetic energy, (1/2) (/) co
2

. That is, at the top of the plane, the

total energy is 25,000 foot-pounds.
At the bottom of the inclined plane, if we rule out the production of heat

energy by friction, the total mechanical energy will also be 25,000 foot-

pounds, and, since the potential energy at the bottom is zero, the 25,000

foot-pounds will be divided between the two kinds of kinetic energy, rota-

tory and translatory. In the expression for the latter, v is unknown, and
in the case of the rotatory kinetic energy, both I and co are unknown.

However, we can find 7; furthermore a and co are connected by the relation,

v = rco. We may therefore say that the translatory kinetic energy is

(1/2) (500)/(32.2) (2co)
2 or 31.1co2 foot-pounds. Since in the case of a

sphere, I = (2/5) (W/g) r2
,

in this problem, / = (2/5) (500/32.2) 22 or

24.8 pound-foot-seconds
2

. Therefore the rotatory kinetic energy is

(1/2) (24.8) co
2 or 12.4 co

2
foot-pounds. We are now in a position to say

25,000 = 31.1 co
2 - 12.4 co

2

Solving for co2 yields co
2

575, or co = 24.0 radians per second.
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It is worth while to do this problem again by making use of both forms
of Newton's second law, getting first the angular acceleration, then the

final angular speed at the foot of the incline.

We may handle the translatory and rotatory aspects independently.
First resolve the 500-pound vertical force (the weight) into component A
parallel to the plane (250 pounds) and component B perpendicular to the

plane (433 pounds). The normal force N will also be 433 pounds. Unless

there is a backward force of friction F, the sphere will slide down the plane
without any rotation, therefore the resultant force parallel to the incline is

250 F pounds. The linear acceleration will be related to the angular
acceleration by the equation a = rot in accordance with section 12-7.

Therefore Newton's second law for translation gives us

500
250 - F = (2 )

This equation contains two unknowns so that it cannot be solved until we
set up the corresponding equation for rotation.

The only torque about the center of gravity of the rolling sphere is that

exerted by the friction, F. We have discovered that the moment of inertia

of the sphere is 24.8 pound-foot-seconds
2

, therefore the relation L = / a
becomes

F 2 = 24.8 a

Simplifying both of these equations gives

250 - F = 31.2 a

and F = 12.4 a

Adding them now gives
250 = 43.6 a

yielding a- = 5.74 radians/second
2

Since we now have coo = 0,
= 100/2 = 50 radians (see section 12-7)

and a = 5.73 radians/second
2

,
the use of equation (c) of section 12-5 gives

co
2 - O2 = 2 (5.74) (50)

and again co = 24.0 radians per second

13-7. Moment of Inertia About Axis Other Than Center

of Gravity. In pure rotation, the center of gravity is at rest and

rotation takes place about an axis through the center of gravity.

It is much more common, however, to have a combination of both

types of motion, as for example, in the case of a rolling body. The

point of contact between the sphere of the preceding section and

the plane is sometimes called the instantaneous center and it is often

convenient to take the torques and the moment of inertia about

this instantaneous center.

The moment of inertia of an object about an axis not passing

through its center of gravity may be found by adding the moment
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of inertia through the center of gravity to an expression formed by

multiplying the mass by the square of the perpendicular distance

between the two axes.

For example, the moment of inertia of the sphere of section 13-6

about the instantaneous center is

2 W 2_L_ W 2
7 W

2- r2 H-- r2 or r2

5 g
^

g 5 g

As another example, find the moment of inertia of a meter stick

about an axis perpendicular to the stick and passing through the

end of the stick rather than the center. This will be

1 W _
2 , W(L\* 1 W

T *L? H-- ( )
or - L?

12 g g\2j 3 g

13-8. Illustrative Problem. Consider again the problem of section

13-6, this time using an axis through the instantaneous center. Again
resolve the weight, 500 pounds, as before. Of the four forces that we now

have, three pass through the instantaneous center. Therefore the torque
is now A2 or (250 pounds) (2 feet) or 500 pound-feet. The moment of

inertia of the sphere about the instantaneous center is

r 87 *5 P und"foot"seconds2

Therefore the equation L = / a. gives

500 = 87.5 a

and a. is again 5.73 radians/second
2

. From this point on, the computation
is the same as before.

SUMMARY OF CHAPTER 13

Technical Terms Defined

Moment of Inertia. The moment of inertia of a body about a given axis

is the combination of the products of each elementary portion of mass in

the body by the square of its distance from the axis.

9 W
I Aywheei

= wr2 = r2

g
W

I cylinder]
= I disk

= HI*2 = $
- f2
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/ hollow cylinder
= $ wf fi

2 + r2
2

J
= J ffi2 + f2

2

J

I
,pkere =\* =

\
*

rod
=

I *ny**is
= I center of gravity + & where X is the

lar distance from the center of gravity to the new axis.
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Sum of the Torques = I a. Both torques and moment of inertia must be

about the axis through the center of gravity or both must be about the

instantaneous center (if there is one). Contrast this limitation of axes to

either center of gravity or instantaneous center in the case of acceleration

with the possibility of using any axis whatever in cases of equilibrium

(zero acceleration).

Kinetic Energy of Rotation. = i 7cA

PROBLEMS

13-1. A boy turns a wheelbarrow upside down so that the wheel is free

to turn, ties a rope to a spoke of the wheel (moment of inertia = 0.4 pound-
foot-seconds2

), and winds up the rope on the axle (which has a diameter of

2 inches and turns with the wheel). If the boy exerts a pull of 25 pounds
and the rope is 4 feet long, how fast does he get the wheel to turning?

13-2. A 64-pound cylinder, 1 foot in diameter, is free to rotate on its

axis and has a cord wrapped around its circumference on which a force of

16 pounds is applied. (1) Show that the moment of inertia of the cylinder
is 0.25 pound-foot-seconds

2
. Compute (2) the accelerating torque, (3) the

angular acceleration, (4) the angle turned through in 2 seconds from rest,

(5) the angular speed at the end of 2 seconds, and /6) the length of cord

unwrapped in the 2 seconds.

13-3. An unknown weight suspended by a cord in which the tension is

16 pounds has a downward acceleration of 16 feet/second
2

. Find the weight.
Would this weight, hanging on the cord mentioned in the preceding problem,
give the cylinder an angular acceleration greater or smaller than that of

13-2 (3)?

13-4. What weight hanging on the cord wrapped around the cylinder of

problem 13-2 will descend 12.8 feet from rest in 2 seconds? What is the

tension in the cord?

13-5. (1) Find the moment of inertia of an 800-gram cylinder, 10 centi-

meters in diameter. If the cylinder is free to rotate on its own axis, find (2)

the weight which, hanging on a cord wrapped around the cylinder, will

descend 90 centimeters from rest in 3 seconds. Compute (3) the linear

acceleration of the weight, (4) the angular acceleration of the cylinder, (5)

the necessary torque, and (6) the tension in the cord.

13-6. Show that the angular kinetic energy of a rolling cylinder is half

as large as the linear kinetic energy.
13-7. Show that if a cylinder slides down a smooth inclined plane and

then rolls down another plane just like it except that the second plane is

sufficiently rough to cause rolling, the ratio of the sliding speed to the

rolling speed is 3/2 at the foot of the plane.

13-8. Solve a problem like that of section 13-6 except that a cylinder is

substituted for the sphere.

13-9. Using the data of section 13-6, compute the frictional force, F.

13-10. If the friction between the sphere and plane in section 13-6 is

just enough to cause rotation without slipping will any heat be generated?
Give reason for answer.

13-11. Collect all the equations dealing with rotation, and pair off each

equation with another one similar to it dealing with translatory motion.
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Then pair off each physical quantity met in rotation with the corresponding

quantity in translation, e.g., moment of inertia corresponds to inertia.

13-12. A bridge table two and a half feet square and two feet high, with
center of gravity in the center of the top and weighing 10 pounds, is dragged
up a smooth 30-degree incline with an acceleration of 3.2 feet per second2

.

If the force is exerted, parallel with the incline, on the table top, solve for

this force, also for the normal forces on each leg.

13-13. Repeat problem 13-12, this time assuming a coefficient of friction

of 0.2. Is it permissible in these two problems to take the moments about

any point?



CHAPTER 14

Conservation Laws

14-1. General Survey of the Field of Mechanics- We have

nearly completed manufacturing physical concepts by the process

of multiplication and division. After this chapter the task becomes

the application of principles we have developed to special situations

such as oscillation and wave motion. Newton's laws have served as

the guiding principle throughout; we have also seen how the third

law of Newton gave rise to the law of conservation of energy. In

the present chapter, we shall examine another conservation law

that also grows out of Newton's third law and pay our last respects

to a deceased conservation law. These generalizations serve to bind

together the seemingly heterogeneous parts of mechanics; we shall

also find that the principle of

energy pervades all the rest of /

physics as well.
* "

14-2. Impulse and Mo-
mentum. The two physical

quantities that remain to be

defined are impulse and mo-
f

mentum. Impulse is the prod- *****

uct of the sum of the forces

acting and the time during which it acts. Momentum is the product
of a mass, (W/g) ,

and its velocity. Both impulse and momentum are

vector quantities, and both are expressed in the same units. Further-

119
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more we can show that when an impulse Ft acts, the change in mo-
mentum is equal to the impulse. For the sake of simplicity, let us

assume that everything occurs along the same straight line; in such a

case, vector addition and subtraction become identical with algebraic

addition and subtraction. Newton's second law states that the sum
of the forces is equal to the product of the mass acted upon and the

acceleration produced, that is F = (W/g)a. Assuming as usual that

the acceleration is uniform, a = (v u)/t> so that F = (W/g)

(v 14)/t. Multiplying both sides of this equation by /, we obtain

ri W W
Ft ^.v u

g g

(W/g)v may be called final momentum and (W/g)u, initial momen-

tum, so that the difference is the change in momentum, and we have

proved it equal to the impulse. Let us examine the units. Ft is

naturally expressed in pound-seconds. Mass is expressed in pound-
seconds2

/foot, and velocity is expressed in feet/second. Therefore

the product of the mass by velocity will have the units (pound-
seconds2

/foot) X (feet/second) or, cancelling, pound-seconds.

14-3. Illustrative Problem. A 500-gram body slides down a smooth

plane inclined 30 degrees to the horizontal. Compute (1) the time required
to move 980 centimeters from rest, (2) the impulse acting on the body dur-

ing that time, (3) the momentum gained, and (4) the final velocity.

(1) As in figure 14-1 the weight, 500 grams, must be resolved into forces

parallel and perpendicular to the inclined plane. Since the angles are 30,

60, and 90 degrees, the component parallel to the plane will be 250 grams

Figure 14-1.

and the component perpendicular to the plane will be 433 grams. The latter

will just be balanced by the normal force, and therefore need not be further

considered. Since there is no friction, the sum of the forces in the direction

of the possible motion reduces to 250 grams. We can substitute enough nu-

merical values into the equation F = (W/g)a to solve for the acceleration.

Substituting, we have 250 = (500/980)a. Solving, we have a = 490 centi-
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meters/second.
2

Using equation (d) of section 9-7, that is, s = ut +
we have 980 = (0) (/) + (1/2) (490) /

2
. Solving, we have t = 2 seconds.

(2) Since the impulse is Ft, we have immediately impulse = (250) (2)

or 500 gram-seconds.

(3) Since the momentum gained is the same as the impulse, the answer
is again 500 gram-seconds. The initial momentum in this case was zero

gram-seconds, therefore the gain in momentum represents the final

momentum.

(4) The final momentum is equal to (W/g)v . We therefore have 500 =
(500/980)?;. Solving this equation for v gives us v = 980 centimeters per
second. We may also obtain the final velocity by using equation (a) of

section 9-7. That is, v = u + at, or in this case, v = + (490) (2) or again,
v = 980 centimeters per second.

14-4. Conservation of Momentum. Momentum is trans-

ferred from one object to another without any gain or loss, so that

we have what is known as the law of conservation of momentum.

So far, no exceptions have been found to this law. Let us illustrate

it with an example. Assume two elastic balls, No, 1 and No. 2,

rolling along a smooth horizontal table, both in the same straight

line, with No. 2 behind and gaining on No. 1. When No. 2 reaches

No. 1, there is a collision which results in speeding up No. 1 and

slowing down No. 2. We are interested in eight physical quantities

which we shall designate with letters as follows. The masses of

No. 1 and No. 2 will be represented by MI and m 2 respectively.

Their initial velocities will be HI and u 2
'

y
and their final velocities

will be Vi and v2 . While the two elastic balls are in contact, No. 2 is

exerting an average forward force on No. 1 equal to F for a short

time, /. By Newton's third law, No. 1 is meanwhile exerting an

equal and opposite force backward on No. 2 or F for the same

length of time, t. The forward impulse on No. 1 is therefore Ft and

the backward impulse on No. 2 is Ft. In accordance with the

equation derived in the previous paragraph
Ft = m\vi m\u\

3,nd Ft = W12V2 W2U2

If we change all the signs of the second equation, the left-hand side

will become the same as the left-hand side of the first equation,
therefore the right-hand sides can then be equated to each other,

giving

Now transpose the negative terms so as to make everything positive

wii>i + wi2V2 = m\u\ + m2U't

or in words, the total final momentum is the same as the total initial
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momentum, therefore during the collision or in general, on any
occasion when no outside forces act on the system, momentum is

neither lost nor gained. The equation is often expressed as

S (mv) = 2 (mu)

The character S (sigma) is often used by mathematicians to mean
"the sum of." Therefore the law of conservation of momentum
follows from Newton's second and third laws.

14-5. Conservation of Angular Momentum. Since exactly

the same arguments may be made for rotating bodies, we can define

angular impulse as the sum of the torques multiplied by the time Lt,

and angular momentum as moment of inertia multiplied by angular

velocity (/ co) ;
furthermore we can write

Lt = / 7o>o

and derive from this the law of conservation of angular momentum
which holds when no outside torques are acting

2 (7 co)
= S (7 coo)

14-6. Illustrations. Consider the linear momenta involved in the case

of the discharge of a gun. Before it goes off, the total momentum is obviously
zero. The momentum of the projectile and the momentum of the powder
gases are both positive, whereas the momentum of the gun itself after the

discharge is negative; these three must add to zero. We often hear the

statement made that the momentum of the gun backward is numerically

equal to the momentum of the projectile forward; this, of course, is

neglecting the momentum of the powder gases. As an illustration of con-

servation of angular momentum, imagine a boy standing on a piano stool

and holding a heavy dumbbell in each hand. If the boy were given an

angular velocity with his arms outstretched, and then left to himself, he

would maintain this velocity indefinitely if there were no friction. But if

the boy were to bend his arms so as to place the dumbbells close to his

body, his moment of inertia would be decreased, and as a consequence, his

angular velocity would increase in accordance with the law that the total

angular momentum remains constant.

14-7. Variation of Mass With Speed. Until recent years
it was supposed that mass was the one property of matter that was

not subject to change. Any other property that could be named,
such as weight, temperature, volume, color, shape, and so on, is

subject to change, but it was supposed that the inertia, or mass,
of a given object was absolutely a fixed quantity. Then it was dis-

covered, first by theoretical considerations, and later by actual

measurement, that when an object, such as an electron or, to go to

the other extreme, the planet Mercury, moves with a high velocity,
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its mass increases somewhat. As an illustration, the planet Mer-

cury has a speed of 36 miles per second when nearest the sun, and
when farthest from the sun, its speed is 23 miles per second. Its

mass is 3,300,000,000,000 tons more at the larger speed than it is at

the smaller speed; this is out of a total of about 3.3 X 1020
tons.

In recent years the speed of electrons has been computed to be

184,000 miles per second at times, and in these cases, the masses

are always more than they are when the electrons are at rest. Light
travels with a speed of 186,000 miles per second; material particles

have never been observed to travel with a speed greater than this.

Since it seems likely that the speed of light is actually the maxi-

mum possible speed for objects in this universe, we may argue
somewhat as follows: as an object acquires speed in the neighbor-
hood of 186,000 miles per second, it becomes more and more difficult

to accelerate it. More exactly, using Newton's second law, the force

necessary to produce unit acceleration increases, until, when the

speed of light is reached, no force in the universe can accelerate

it; that is, the necessary force becomes infinite. Since the ratio of

the force to the acceleration is the mass, or inertia, then we have to

say that the mass increases to an infinite value when the speed in-

creases to 186,000 miles per second. But for any of our ordinary

engineering projects, this increase of mass is absolutely negligible.

14-8. "Law of Conservation of Mass" No Longer
Held To Be True. From the facts given in the preceding para-

graph, we see that mass may be increased and decreased. This

statement already contradicts the so-called "law of conservation of

mass" which used to be found in textbooks a few years ago. In

1933, matter was first observed actually to be created out of "radiant

energy," and converted back again into radiant energy, and this

was theoretically predicted as a possibility several years previous
to that. But in spite of these exceptions, we may still say that the

amount of water in the universe seems to be nearly constant.

Furthermore it is to be noted that matter itself must now be added

to the list of forms of energy. An atom bomb represents a direct

conversion of matter into energy.

14-9. Conservation of Energy. Another conservation law

(which apparently has no exception) has already been discussed

(see section 3-3), namely the law of conservation of energy, which

now includes the defunct "law of conservation of mass." No further

treatment of it is necessary at this point; it is mentioned here merely
to make the list of conservation laws complete.
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SUMMARY OF CHAPTER 14

Technical Terms Defined

Impulse. Product of the unbalanced force acting on a body by the brief

time during which it acts.

Momentum. Product of mass of a body by its velocity.

Laws

The momentum of a system remains constant when no outside forces act.

The angular momentum of a system remains constant when no outside

torques act.

Mass is now known to be merely another form of energy.

PROBLEMS

14-1. A 15-pound unbalanced force acts on a 48-pound body and moves
it 20 feet from rest. Compute (1) the final speed, (2) the final momentum,
and (3) the impulse which caused this momentum.

14-2. A 64-pound body is moving along a horizontal surface with an
initial speed of 20 feet/second. It slows down under the action of friction

alone. The coefficient of friction is 0.25. Compute (1) its initial momentum,
(2) its momentum after it has moved 24 feet, and (3) the change in momen-
tum. (4) Compute the impulse directly from the force and the time and

compare (4) with (3).

14-3. How far will a body fall in one second from rest? What will its

velocity be at the end of that second? Compute the loss in potential energy
of a 32-pound body falling one second from rest, and the kinetic energy
gained during that second. This is assuming that there is no air resistance.

When air resistance is actually considered, the body does not fall so far in

the second nor gain as much speed. Under the new conditions, is the gain in

kinetic energy equal to the loss in potential energy? Why?
14-4. A watch spring is wound, thus storing potential energy. The

spring is then dissolved in acid. What becomes of the potential energy?
14-5. A 32-pound body has an initial velocity of 24 feet per second up a

smooth plane inclined 30 degrees to the horizontal. Compute (1) the

initial kinetic energy, (2) the amount of potential energy into which this

kinetic energy could be converted, (3) the vertical height to which the body
would rise in acquiring this potential energy, and (4) the distance along the

inclined plane which corresponds to this height. Does this agree with the

distance along the plane computed from the initial velocity and deceleration?

14-6. In problem 14-2, calculate the initial kinetic energy. What be-

comes of this energy? Calculate the work done in stopping the 64-pound
body. Is this work positive or negative?

14-7. A 2-gram bullet is fired from a 4-kilogram gun; the powder gases

weigh 0.6 grams. What was the total momentum before the bullet was
fired? What is the total momentum as the bullet and powder gases leave

the gun? If the bullet has a muzzle speed of 30,000 centimeters per second
and the gun kicks with a speed of 27 centimeters per second, find the

velocity of the powder gases.



CONSERVATION LAWS 125

14-8. If an 8-ounce ball is thrown vertically upward with a speed of 64

feet per second, and potential energy is measured with reference to the

height where the ball leaves the thrower's hand, compute the kinetic and

potential energies at (1) the point where the ball leaves the thrower's hand,

(2) the point where it is one second later, and (3) the maximum height
reached.



CHAPTER 15

Simple Harmonic Motion; Simple

Pendulum; Compound Pendulum

15-1. Radial Acceleration. In section 10-5 we obtained an ex-

pression for the radial acceleration which exists when a body moves

uniformly in a circle, and in section 12-7, we expressed this radial

acceleration in terms of the number of revolutions per second. As
will be remembered, the two expressions were a = v*/r and a =
47r

2wV. This is one of the two cases in this book in which the

acceleration is not constant; to be sure, the magnitude is constant,
but the direction varies, being always directed toward the center.

We are now about to meet the other variable acceleration, and this

time both the magnitude and direction vary.
15-2. Simple Harmonic Motion. If we watch a body that

is moving uniformly in a circle in such a way that our eyes are in

the plane of rotation, we see the rotation edgewise, and the particle
no longer appears to be in uniform circular motion; it appears

merely to move back and forth. An illustration of this may be
found in the satellites of the planet Jupiter. Four of these satellites

are large enough so that persons are occasionally found who can

see them with the naked eye. Most of us, however, have to resort

to opera glasses to make them visible. These satellites (or moons)
run around the planet practically in circles, but since we see these

126
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circular orbits edgewise it appears to us that the moons simply go
back and forth across the face of the planet to one end of the ap-

parent route, and back behind the planet to the other end of the

route. The inner one takes about two days for a round trip and the

outer one about sixteen days. "Back and forth" motion of this

type is called "simple harmonic motion;" that is, simple harmonic

motion is uniform circular motion seen edgewise. The mathemati-

cian would say that it is the projection of uniform circular motion

on the diameter of the circle.

Figure 15-1.

15-3. The Velocity in Simple Harmonic Motion. In fig-

ure 15-1, the point Q is moving around the circle counterclockwise

with a velocity v which is equal to 27rra, and the point P is moving
in simple harmonic motion back and forth along the diameter. If

this motion is viewed from a point in the plane of the circle and at

right angles to the diameter, AB y
the component of the velocity

that will be seen is v, and from the similar triangles QRS and QOP
it is seen that QS/QR = QP/QO. Replacing these letters with the

values from the figure, we have V/VQ
= (Vr2

a;
2
)A- Since VQ =

2 TT rn, the relation becomes

The plus and minus sign is necessary because the velocity v may be

either to the right or to the left; whereas 2, TT, n, and the radical are

essentially positive. From this equation it is clear that when the
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value of x is zero, the point P, which is always directly under Q,

coincides with the point O, and the velocity v becomes 2irrn. On the

other hand, when the three points Q, P, and B coincide, x becomes r,

the radical becomes zero, and therefore the velocity v is zero. From
a common-sense standpoint, the point P will have to have a zero

velocity at the points A and B, for it is there that it stops and re-

verses its motion
;
also the point P should have its maximum velocity

at the exact center, and this is consistent with the fact that in the

equation, v has its largest value (2irrri) when x is zero.

15-4. The Acceleration in Simple Harmonic Motion.
In figure 15-2, the acceleration a

,
which is 4?rW, is shown directed

toward the center of the circle from the point Q. But when the mo-
tion is viewed edgewise, it is the component of a parallel to BA that

becomes important. From the similar triangle relationship we have

a/ao = x/r, and since a = 4?r
2nV the equation reduces to

We see therefore that at the center, when x = O, that there is no

acceleration; on the other hand we have a maximum value of the

acceleration at A and at B, when x = r. This acceleration, like the

Figure 15-2.

centripetal acceleration, is always directed toward the center;

therefore when x is on the right of 0, the acceleration is toward the

left, and when x is on the left, the acceleration is toward the right;

in other words, a always has the opposite sign from that of x, hence

the minus sign in the equation.
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15-5. Technical Terms Associated With Simple Har-
monic Motion. In figures 15-1 and 15-2, almost every quantity
in the diagrams has a technical name, x, the distance between

and P, is called the displacement. It is positive when measured to

the right and negative when measured to the left. The maximum
value of x is r, the radius of the circle; but r is called the amplitude,
in simple harmonic motion, and is always considered positive. The

angle POQ is called the phase angle, and varies from zero to 360

degrees. If we have two points, P and P', which correspond to two

angles such that there is a constant difference between the angles

of, say, 90 degrees, then we say that P and P1

are 90 degrees out

IS Is Si efi

Figure 15-3.

of phase with each other, n is called the frequency] it is the number
of round trips made in unit time. The reciprocal of the frequency
is the period or the time necessary for one round trip; we shall call

it r. We could therefore rewrite our two equations in terms of T
instead of n, thus

v = (2 TT Vr2 - x*)/T

and a = -
(47r

2
.r)/r2

which when solved for T is

T = 2 TT V */a

15-6. Force in Simple Harmonic Motion. We can apply
Newton's second law to find the force necessary to produce simple
harmonic motion.

therefore

p w
F = a

g

W
F = -

g

Put into words: whenever the force is proportional to the displace-

ment but opposite in sign, it will produce simple harmonic motion.
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We remember that in the case of an elastic body, since the stress is

proportional to the strain (Hooke's law, section 6-5), in any par-
ticular case the stretching force, F, is numerically proportional to

the stretch, #, and of the same sign. By Newton's third law, how-

ever, the elastic body will exert a restoring force which is numeri-

cally equal to, but the negative of, the stretching force; therefore

the elastic body will cause whichever body is doing the stretching
to tend to execute simple harmonic motion. We are therefore pre-

pared to find that a weight suspended by a helical spring oscillates

vertically nearly in simple harmonic motion. In the case of a given

spring or other elastic body where W, g, 4, TT, and n are all constant,

the equation relating the force and the stretch may therefore be

written
F = - kx

15-7. Illustrative Problem (1). Imagine a light, stiff, horizontal rod,

with one end clamped in a vise, and a weight of 64.4 pounds, securely
fastened to the other end of the rod. The stiffness of the rod is such that

when the weight is pushed to one side a distance of 2.4 inches and released,

it makes just two vibratory round trips per second. Find the speed of the

weight as it passes through the central part of its path, the acceleration as

it passes through the end of its path, the force necessary to displace the end
of the rod 2.4 inches, and the force necessary to displace the end of the rod

4.8 inches.

By Hooke's law, the force will be proportional to the displacement, so

we immediately draw two conclusions: one is that the weight will execute

simple harmonic motion, so that our velocity and acceleration equations
will hold good; the other is that the fourth answer to the problem will

be twice the third answer. It is one of our simplifying assumptions that

none of the energy of the vibrating rod will be converted into heat. A
real rod will execute approximately simple harmonic motion, but not

exactly. The rod will gradually come to rest and become slightly warmer.

The correct name for the phenomenon, as it actually takes place, is

damped harmonic motion. In simple harmonic motion the amplitude re-

mains the same and the oscillations continue indefinitely. Assigning
letters to our data, we have r = 2.4 inches or 0.2 feet, n = 2 per second,
and x = zero for the central part of the path and 0.2 feet for the end of

the path. The velocity is therefore

(2) (3.14) (2) Vo.22 - O2 or 2.51 feet per second

It was however the speed but not the velocity asked for, so that we may
discard the plus and minus sign, being indifferent as to the direction of the

motion. The acceleration is - (4) (3.14
2
) (2

2
) (0.2) or - 31.6 feet/second

2
.

We have here taken the value of x on the right-hand end of the path so that

the acceleration is toward the left and therefore negative. The force is

equal to (W/g)a. W is 64.4 pounds, g = 32.2 feet/second
2
,
and a =
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31.6 feet/second
2

;
the force therefore comes out 63.2 pounds, exerted

toward the left on the weight. As the question is worded, however, we wish

to know the force necessary to displace the rod; this is equal numerically
to the one just found, but opposite in direction or toward the right. If we
wish twice the displacement we shall need twice as much force, or 126.4

pounds.

15-8. Illustrative Problem (2). It is found that a force of 126.4

pounds will displace one end of a rod 0.4 feet when the other end is clamped
in a vise. If a weight of 64.4 pounds is attached to the free end and dis-

placed 0.2 feet from the position of rest, what will be the frequency and
the period of vibration? We now start by saying that since the forces must
be proportional to the displacement in order to produce vibrations of the

simple harmonic type, the force that corresponds to 0.2 feet is found by
solving the proportion F/126A = 0.2/0.4, which gives us F = 63.2 pounds.
The force that the rod exerts on the weight will be the negative of this. If

now we substitute in the equation

W
F = - 4 vWx

g

the equation will become - 63.2 = -
(64.4/32.2) 4 (3.14)2 (w)2 (Q.2). Solv-

ing, we find that n is 2 round trips per second. The period of vibration

is the reciprocal of the frequency and is in this case \ or 0.5 second per
round trip. It is now clear that we did some unnecessary work when we

stopped to find the force that went with the 0.2 feet

because the use of the original displacement (0.4 feet)

and the original force (126.4 pounds) in the equa-
tion would have given us the same value of n. That

is, so long as Hooke's law holds, the period of vibra-

tion of a given system is the same whether the amplitude
is large or small.

15-9. The Simple Pendulum. A pendu-
lum bob will almost obey the laws of simple har-

monic motion if the vibrations are small. Con-

sider the so-called simple pendulum shown in

figure 15-4. It consists of a weightless inexten-

sible string of length /, and a bob which has no Figure 1 5-4.

volume but has a weight W. This will remind

the reader of the fictitious object of which we determined the moment
of inertia in section 13-2. Drop a perpendicular from the bob to

the line of the vertical and call the perpendicular distance x, the

displacement. The weight is always a force vertically downward;
we therefore resolve it into two components, one which merely tends

to stretch the string and which will not further concern us since this

string of ours will not stretch, and the other component F, tangent

to the arc which the bob swings through. Due to the similar triangle
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relationship, we can say x/l
= F/W. Therefore F = Wx/l, that is,

the force is proportional to x. But since F and x always have op-

posite senses, the equation to be complete must contain a minus

sign, F = Wx/l. If the vibrations are small, then F is nearly in

line with x, and the pendulum will approximately execute simple har-

monic motion. This means that F is nearly equal to (W/g)4ir
2n2x

as well as being exactly equal to Wx/l. Equating these two ex-

pressions for F and cancelling the minus signs, we have Wx/l =

(W/g)4ir
2
n?x. Cancelling W and x and multiplying through by gl

g
= 47T2W2

/

This gives us a convenient method of determining the acceleration

of gravity, it being necessary merely to know the length of the pen-

dulum, /, and the number of round trips, n, that the pendulum makes

per second. We can replace n by 1/7", since n and T are reciprocals.

g is therefore also equal to 47r
2

//r
2

. If this equation is solved for T,
it gives us

15-10. Illustrative Problem. A seconds pendulum keeps correct time

at a certain temperature. If, as a result of a rise in temperature, its

length increases by 0.02 per cent, how many seconds will it now lose per day?
The length of a seconds pendulum may be found by substituting into

the equation g
= 47r2//r2

,
the values g

= 32.2 feet/second
2

,
and T = 2.00

seconds. The period of a seconds pendulum is the time necessary for the

pendulum to make a round trip, and since the pendulum ticks at one-second

intervals, once on the way over and once on the way back, the total time

for the round trip is two seconds. Thus the equation becomes

4(3.14)3

Solving, we obtain / = 3.26 feet. If the increase of length is to be 0.02 per
cent or two parts in ten thousand, then we must multiply 3.26 by 0.0002 to

obtain the elongation. This gives us 0.000652 feet. An interesting point
comes up in connection with the question of adding this elongation to the

original length. Since we are working to slide-rule accuracy only, we are

not at liberty to say that the unchanged length is known to be 3.260000

feet and therefore we cannot say that the changed length is 3.260652. But
it is true that if the original length had been 3.260000 feet exactly, then the

increased length would have been exactly 3.260652; at least the length has

been increased in that proportion. Therefore, at this point the student has

his choice of recomputing the problem with seven significant figures or of

using an algebraic method; we shall show how it works both ways.

First, let us go back to the beginning and use seven significant figures in

our computations. Since g is not known experimentally to that degree of
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precision, let us assume that g - 32.20000. T is now 2.000000, and
ic = 3.141593. The equation is now

M 20000 - (4.000000) (3. 141593)' f
32 -2000 --

(2.000000)2

-
Solving, we obtain I = 3.262542 feet. Three figures of the elongation are

enough, therefore we already have the elongation, e = 0.000652, and add-

ing, we find that the new length is 3.263194. We now need the new value

of T to go with our new length. Calling this Tf
the equation now becomes

(4.000000) (3.141593)2 (3.263194)

Solving, we obtain T = 2.000200 seconds. In a day there are 86,400 sec-

onds, therefore our clock will normally have time for 86,400/2.000000 or

43,200.00 periods. But under the conditions of the problem there will be

time for only 86,400/2.000200 or 43,195.68 periods, a difference of 4.32

periods. Since the clock registers each period as two seconds, it will lose

8.64 seconds per day.

Let us now solve the problem again by an algebraic method which makes

unnecessary so many significant figures. This method depends upon the

fact that a number like 1.002 squared becomes 1.004004 which rounds off to

1.004 when reduced to slide-rule accuracy. That is, if x is small compared
with unity, then #2 will be negligible and we have (1 + .v

2
)
= 1 + 2x

approximately, which we shall call case (1). Similarly, the square root of

1 + 2#, which is written algebraically (1 + 2,r)
05

,
is approximately equal

to 1 + x [case (2)]. It is also true that (1 + x) (1
-

x) = 1 - x2
,
but

since x2 is negligible, we may write approximately (1 + #) (1 x) = I,

and dividing both sides by 1 x gives us case (3), namely, 1 x =
1/(1 + #), or (1 + x)~

l = 1 x. All three of these expressions may be

included under one approximate equation, true only when x is small in

relation to unity, namely

(1 xY = 1 nx

In the three cases just cited, the plus-or-minus sign is plus, and n has the

three values, 2, 3, and 1 respectively. Starting then from the point where

the elongation was computed, we have the new length equal to 3.26 +
0.000652, which may be written 3.26(1 + 0.000200). The process of solving
for (T')

2
gives us the equation

_ (4.00)
2
(3.14)

2
(3.26) (1 + 0.000200)

which gives us (T)2 =
(4.00) (1 + 0.000200) and T =

(2.00) (1 +
0.000100) by case (2). Dividing 86,400 by 2.00 gives us 43,200, and divid-

ing 86,400 by (2.00) (1 + 0.000100) gives (43,200) (1
-

0.000100) by case

(3), which may be written 43,200 4.32. We therefore again have a dif-

ference of 4.32 periods or 8.64 seconds, the amount that the clock will

lose per day.
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Figure 15-5.

15-11. The Physical or Compound Pendulum. A simple

pendulum is obviously fictitious; it is impossible in practice to have

a weightless string and a volumeless mass. But a real pendulum can

always be found that will have the same period as any given simple

pendulum, and we call this real pendulum a physical pendulum or a

compound pendulum. Such a pendulum is shown in

figure 15-5. S is the point of suspension, C is the center

of gravity, and is a point called the center of oscilla-

tion. The distance from S to is the same as the

length of a simple pendulum which would have the

same period; in fact, the method of locating O is to

measure down from S the computed distance /. It

will be shown in the next section that the moment of

inertia 7, of the compound pendulum about the axis

5 is mhlj where h is the distance from the point of

suspension to the center of gravity, so that / in the

last equation of section 15-9 may be replaced by I/mh.

This allows us to express the period T
9
as 2w\/I/mgh.

We are able to determine variations in g by noting variations in the

period of an actual pendulum at different locations.

The center of oscillation is sometimes called the center of per-

cussion. If the object shown in figure 15-5 were a baseball bat and

were grasped at the point 5, the point O should

be the best place for the baseball to meet the bat

to obtain a satisfactory hit. If the ball strikes the

bat between the points O and 5, the batter's

hands will be driven backward, and if the ball

strikes on the other side of 0, the batter's hands

will be driven forward, but no jar at all will be

felt when the contact is made at the point O.

15-12. Derivation of Fundamental Equa-
tion of the Compound Pendulum. In order

to show that 7S
= mhl, when /

s
is the moment of

inertia of the compound pendulum about the

point of suspension 5, and m is the mass W/g.
of the pendulum with center of gravity at C,

make the following assumptions. Let the angle between the axis

of the compound pendulum in figure 15-5 and the vertical direction

be the same as in figure 15-4; let the pendulum bob of the simple

pendulum of figure 15-4 have the same mass (and weight) as the
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entire compound pendulum of figure 15-5; furthermore the length

/, of the simple pendulum has been adjusted so that it will have

the same period T, as the compound pendulum. The two pen-
dulums will therefore be moving in the same way at all times and
in particular, at a given instant, they will have the same angular
acceleration about their respective points of suspension. We shall

therefore set up the equation L = la for each pendulum. The
two torques will be different; in figure 15-4 it is Wx, while in figure
15-5 it is less, since the perpendicular dropped from C to the verti-

cal line through S is h/l of the distance x. Thus, if we call L the

torque of figure 15-4, we may express the other as hL/L The mo-
ment of inertia of the simple pendulum is ml2

since all the mass is

at the lower end of /. Thus the values of L = la become respectively
'

L = mft a

- hL = 7S a.

and
-y-

Dividing one equation by the other cancels the Z/s and the a's and

gives

l__ mP
h~ /s

Cancelling one / and cross multiplying gives us the desired result,

7B
= mhl.

15-13. Use of Compound Pendulum Equation to Measure
Moments of Inertia. We may make use of the relation given
in section 13-7 to write

7. = /c +

Suppose then that it is desired to find the moment of inertia of a

given object, of weight W, about its center of gravity. We already

know how to locate the center of gravity (see section 8-6). Hang up
the body by some other point, the distance of which from the center

of gravity is h. Determine the time required to make a given number
of complete vibrations, say fifty, from which T may be found.

Knowing g at the locality of the experiment, / can be found by using

the equation

r = 27TV/7J

7, may now be found from the relation

/, = Whl/g

Finally Ic is obtained from the first equation of this chapter.
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15-14. Energy of a Body Executing Simple Harmonic
Motion. The kinetic energy of a body executing simple harmonic

motion may be readily computed by inserting the expression for its

velocity derived in section 15-3 into the formula %mv
2
. Thus we

have

r - * or

kinetic energy = 2w7r2tt2 (r
2 z2)

Because of the law of conservation of energy, we can state that

the total energy of an isolated vibrating body is a constant. When
x = r, there is no kinetic energy because the velocity is zero. When
x 0, we have the maximum velocity and at this point all the

energy is kinetic. Therefore

total energy = 2w7T2n2r2

The difference between the total energy and the kinetic energy
is potential energy. Subtracting the first equation of this section

from the second, we have

potential energy = 2mw2n2x2

A comparison of the two equations of section 15-6 gives

k = 4W7T2W2

and using this k, we can express the potential energy as \kx*. Thus
another expression for the total energy of an oscillator is

energy = \ mv2 + j kx2

SUMMARY OF CHAPTER 15

Technical Terms Defined

Simple Harmonic Motion. The projection on the diameter of uniform

circular motion.

Displacement. Distance measured in a given direction from standard

point taken as origin. In simple harmonic motion, the origin is the center

of the path.

Amplitude. Maximum displacement from the center.

Phase Angle. A description of the position of a particle executing simple
harmonic motion in terms of the angular position of the correspond-

ing point moving on the circumference of the circle.

Frequency. Number of round trips per unit time.

Period. Time of one round trip.

Simple Pendulum. A volumeless bob suspended from a fixed point by
means of a weightless inextensible cord.
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Compound or Physical Pendulum. Any physical object suspended from
some point other than its center of gravity and allowed to oscillate.

Center of Oscillation or Percussion. A point in a physical pendulum
situated below the point of suspension by a distance equal to the length
of a simple pendulum of the same period.

PROBLEMS

15-1. In the case of a body executing simple harmonic motion, what is

meant by the terms (1) displacement, (2) amplitude, (3) period, (4)

frequency, and (5) phase? (6) Which are variable and which are constant?

15-2, Describe simple harmonic motion in such a way as to indicate at

what points the velocity and the acceleration have their minimum and
maximum values. Is it possible for an object to have simultaneously a zero

velocity and an acceleration that is not zero? Illustrate by means of a

baseball moving freely under gravity.

15-3. A body oscillates in simple harmonic motion at the rate of three

vibrations per second with an amplitude of two inches. Find its speed (1) at

the center, (2) one inch from the center, and (3) two inches from the center.

15-4. Find the acceleration of the body in the preceding problem in the

three positions mentioned.

15-5. If a 16-pound body is hanging on a helical spring that requires a
downward force of 2 pounds to stretch it 3 inches, compute the period
of the 16-pound body on the spring when pulled down 3 inches and re-

leased. Would the period be the same if the displacement were 2 inches

instead of 3 inches? What requirement for simple harmonic motion proves
this?

15-6. If the 16-pound body of the preceding problem is replaced by a

4-pound body, compute the period of the resulting simple harmonic motion.

15-7. A 50-gram weight is hanging on a helical spring. Another 50-gram
weight stretches the spring 4.9 centimeters more. Compute the period if

the two 50-gram weights are slightly displaced and allowed to vibrate.

15-8. What is the length of a seconds pendulum at a place where g is

980 cm./sec.
2 ?

15-9. If a pendulum, the length of which is 246 centimeters, has a period
of 3.14 seconds in a certain place, what is the value of g in that locality?

15-10. The reading room of the central library of the Massachusetts
Institute of Technology is immediately under the central dome. A long

pendulum, consisting of a wire and heavy bob is suspended from the center

of the dome to a table top in the center of the room to illustrate Foucault's

famous experiment in which he demonstrated the rotation of the earth. It

takes the pendulum just nine seconds to make a complete round trip. How
long is the pendulum? (Look up Foucault's experiment in a reference book
and write a 50-word description.)

15-11. How should the length of a pendulum be changed to halve its

period? What is the effect on the period of a pendulum of carrying it up on
a mountain where g is smaller than at the lower level?

15-12. If a pendulum clock keeps correct time at a place where the

acceleration of gravity is 32.2 feet/second
2

,
will it gain or lose when taken
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to a place where the acceleration of gravity is 32.1 feet/second2? How much
will the gain or loss be per day?

15-13. A clock loses 5 minutes per week. What adjustment must be
made to its pendulum to make it keep correct time?

15-14. An iron ring has an outer diameter of 10 inches, an inner diameter
of 6 inches, and weighs 10 pounds. Find its moment of inertia (1) about its

center and (2) about a point on the inner circumference. (3) If this ring is

suspended from a peg at the inner circumference, what is the length of a

simple pendulum that has the same period? (4) Find the period and

frequency of this ring when thus used as a compound pendulum.
15-15. A physical pendulum consists of a lead sphere of specific gravity

11.34 and one inch in diameter, attached by a string, 12 inches long, to a

point of support. Find (1) its moment of inertia about the center of the
lead sphere, (2) its moment of inertia about the point of suspension, (3)

length of the equivalent simple pendulum, (4) period, and (5) frequency.
Would it be permissible to assume that (3) is 12.50 inches?



CHAPTER 16

Properties of Waves

16-1. Essential Characteristics of a Wave Transmitting
Medium. Water waves represent a rather complicated type of

wave, otherwise they would furnish an excellent starting point for

this discussion. But all types of physical waves have one charac-

teristic in common: that it is motion that is transferred and not

matter. If we could watch one drop of water in a water wave, we
should find that it goes round and round in a very limited region

and does not follow the waves in the direction of propogation. Any
medium which transmits a wave must possess at least two properties,

elasticity and inertia. The individual particles in a wave execute

simple harmonic motion, which implies elasticity in order to bring
the particle back after it has been displaced, and also implies in-

ertia sufficient to keep the particle going, after it reaches the equi-
librium position, until the particle attains an equal displacement
on the other side. If the medium possesses inertia, which is the same

thing as mass, then it is possible to talk about its density, and, as

it turns out, the speed V, with which the wave will be transmitted,
is equal to the square root of the ratio of the elasticity of the medium
to its density. That is

of medium

density of medium

16-2. Transverse Waves. We shall find it convenient at the

outset, in order to form a mental picture of a wave, to imagine a

long block of jelly as in figure 16-1 with oarticles of sawdust im-

139
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bedded at equidistant intervals, and the whole at rest. Now let

the experimenter imbed his finger in the jelly at the left-hand end

and commence to execute a vertical simple harmonic motion with it.

Figures 16-2 and 16-3 represent two successive illustrations of the

sawdust particles showing something of their consequent motion.

In figure 16-2, particle A is at the top of its motion and about to

start downward. In figure 16-3 it is still going down and particle B
has now reached the top. The same remarks could be made about

particles 7 and / that were made about A and B. The student

will find it worth-while to draw the figure which would logically

follow figure 16-3 in which particles C and K have risen to the top.

It will then be clear that the shape of the wave is moving progres-

sively toward the right although the individual particles are merely

executing simple harmonic motion. A similar experiment could be

carried out with a very long rope fastened at the right-hand end

ABCDEfGMlJK

Figure 16-1.

Figure 16-2.

Figure 16-3.

and moved up and down at the left-hand end. When the direction
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of propagation of the wave is at right angles to the direction of the

motion of the individual particles, as in figures 16-2 and 16-3, we

say that the wave is transverse. From about the years 1800 to about

1925, light was considered to be an example of a transverse wave.

We now think that light consists of streams of projectiles called

photons, loosely controlled by sets of non-physical transverse waves

called psi-functions. The "control" which psi-funclions exert over

photons, electrons, and so on, reminds us of the mathematical

probability function which controls the proportion of bullets which

will lie within each circle of a target. This topic will be under-

stood when we study the chapter on light.

16-3. Longitudinal Waves. If the experimenter moves his

finger in the jelly so as to execute a horizontal simple harmonic

motion, a set of particles originally equidistant would soon appear,
if a snapshot could be taken of them, as in figure 16-4. This figure

will be self-explanatory in view of what has already been said. Tlu>

individual particles execute simple harmonic motion while the series

of compressions and rarefactions travel from left to right. When
the motion of the wave is parallel with the motion of the individual

particles, as in figure 16-4, we say that the wave is longitudinal or

Gompressional. Sound is an example of a compressional wave.

16-4. Technical Terms. All the expressions which were de-

fined in connection with simple harmonic motion, namely, ampli-

tude, displacement, phase, frequency, period, are also used in con-

nection with wave motion with the same meanings. It is possible

to give additional meanings to some of them. For instance, the

period is not only the time necessary for one of the particles to make
a complete round trip, but it is also the time that it takes the wave
to travel from a particle such as A, to the next particle that is going

through the same motion at the same time, which is / in this illus-

tration. The distance from A to / is called a wave length, and is

represented by the Greek letter X (lambda). Therefore we could
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have defined the period as the time necessary for the wave to travel

Figure 16-4.

one wave length. The intensity of a wave is proportional to the

product of the square of the amplitude and the square of the fre-

quency. The speed of the wave is the ratio of the wave length to

the period, that is, V = \/T. Since n = 1/T, we have also

F = An

16-5. Reflection. In section 16-2 we specified a long rope and
a long block of jelly to prevent reflection from the further end.

Waves are always reflected when they reach a boundary between

two mediums. This statement is true whether or not the wave
finds it possible to enter the new medium. If it can, then the energy
is divided between the reflected wave and the wave that passes on.

The path of a wave is called a ray. If the ray meets the boundary
at right angles, it is reflected straight back upon itself; if not, the

situation is as shown in figure 16-5. The angle 0, between the in-

cident ray and the normal, must be the same as the angle 0', be-

Figure 16-5.

tween the reflected ray and the normal. If the boundary is a rough
surface, rather than a smooth plane surface, then at each small

portion of the surface the law of reflection will hold true, but the
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total effect will be to produce rays going in all directions. We call

this a case of diffuse reflection.

16-6. Refraction. The wave that passes on into the new
medium is said to be refracted. Although it follows the same general

direction as the incident ray, it will not be in exactly the same direc-

tion. The angle 0", will be different from 0. The speed of the reflected

wave is the same as that of the incident wave because both waves

are in the same medium. But the speed F", of the refracted wave,
will in general be different from that of the incident wave V, be-

cause the medium is different. The following proportion holds true

connecting the speeds and the angles

V sin

V"
~

sin 6"

(The sine of an angle is defined in appendix 6.) This equation may
be made evident as follows. In figure 16-6 the wave reflected is

omitted for the sake of simplicity (although actually it is always

present) and the incident and refracted waves are both given a

finite breadth. The lines BD and FE are called "wave fronts"

technically (although they are not the fronts of waves); a wave
travels at right angles to its wave fronts except under circumstances

so unusual that we shall not discuss them here. A wave front may

Figure 16-6.

be defined as a surface containing points all in the same phase at

the same time. If anything happens to change the direction of the

wave fronts, it will automatically change the direction of the ray.

Assume the speed of the wave in medium 1 to be V and the speed
in medium 2 to be V". One edge of the wave travels the distance

DE in the same time the other edge takes to travel the distance BF.

If / represents this time, then DE Vt and BF = V"t. If BE is
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called k, then sin is Vt/k and sin V9
is V"t/k. (See appendix 6.)

If we divide sin by sin 6", the 's and /'s will cancel and we shall

obtain

!i?JL_ JL -
sin 0"

"
V"

~~ M

This ratio ju, is known as the index of refraction.

16-7. Illustrative Problem. In shallow water the speed of a water

wave depends, among other things, upon the depth of the water. If a

water wave suddenly passes from water eight feet deep to water two feet

deep, its velocity will drop from 16 feet/second to 8 feet/second. If the

path of the water wave makes an angle of 30 degrees with the normal to

the boundary between the two depths while in the deeper water, find the

corresponding angle in the shallow water. Find also the index of refraction.

Substitute in the equation, sin 0/sin 6" = V/ V"', letting
= 30 degrees,

V = 16 feet/second, and V" = 8 feet/second. From appendix 7 we see

that sin 30 = 0.500, so that the equation becomes

0.500 16

sin 0" 8

Solving, we obtain sin 0" = 0.250. From appendix 7, we see that 0" is

slightly less than 15 degrees. A more complete table of sines or a slide rule

will show that 0" is 14 29'. The index of refraction p,
= V/V" = 16/8

= 2.00

16-8. Diffraction, Although water waves travel in nearly

straight lines in a given medium, the waves have some tendency to

bend around corners. The longer the wave length, the greater is this

tendency; it may easily be observed in the case of water waves. This

tendency of waves to bend around corners is called diffraction. In

practice, in a diffraction experiment, a wave is made to go through
a narrow opening in which case there will be two corners for it to

bend around, and the amount of diffraction will, in addition to

being proportional to the wave length X, also be inversely pro-

portional to the width of the opening w. The equation is

sin =
w

where the angle 0, represents the maximum deviation from the

original direction. Rays will be present with all possible deviation

angles between and zero.

16-9. Interference. Waves have one property that is not

shared by any other type of motion; this property is called tech-
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nically interference. If two waves are traveling in nearly the same
direction so that they are able to cross each other's paths, the

vibrations of one wave will add algebraically to the vibrations of

the other wave. The two waves may be out of phase with each other

by any number of degrees. If they happen to be 180 degrees out of

phase with each other and have the same amplitude, they will com-

pletely neutralize each other at the point where they cross. On the

other hand it is possible for the two waves to be in phase with each

other (0 degrees phase difference) in which case they reinforce each

other. There is no loss of energy during interference, but merely a

redistribution. Examples of this phenomenon will be found when
we discuss sound and light.

16-10. Polarization. The waves pictured in figures 16-2 and

16-3, also the wave motion in the rope, that is, transverse waves,

require two dimensions for their description; we may think of them
as existing in planes. When a collection of transverse waves traveling

in the same direction exist in parallel planes, we say that the waves

are polarized. A group of transverse waves could travel in the same

direction and lie in such planes that no two planes arc parallel to

each other. Such a group would be described as completely un-

polarized. Longitudinal waves cannot be polarized.

ABCDtf-GHlJ
Figure 16-7.

16-11. Stationary Waves. If we should continue our ex-

periment with the vibrating rope (section 16-2) long enough to

allow the reflected wave to combine with the incident wave, it

would be observed that certain points on the rope remain stationary.

These points are called nodes, and are represented in figure 16-7 by
the points -4, B, C, D, E y

and so on. The points between these

nodes move up and down, and in figure 16-7 three different positions

of the rope are shown, the straight line, the full curved line, and the

dashed curved line. A point half way between two nodes is called

an antinode. The distance from a node to the second node beyond,
for example, from A to C, is a wave length. This combination of

two wave motions going in opposite directions is called a stationary

wave.
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SUMMARY OF CHAPTER 16

Technical Terms Defined

Wave. A vibrational disturbance propagated through an elastic medium.

Transverse Waves. Waves in which the motion of the individual particles

is perpendicular to the direction of propagation of the wave.

Longitudinal or Compressional Waves. Waves in which the motion of

the individual particles is parallel to the direction of propagation of the

wave.

Wave Length. Distance along the axis of the wave from a given particle

to the next one that is in phase with it.

Period. Time required for a wave to travel one wave length.

Reflection. The reversal of the general direction of a wave upon meeting
a surface boundary separating two different mediums.

Refraction. The slight change in the direction of a wave as it passes

through a surface separating two different mediums.

Wave Front. A continuous surface in a vibrating medium which contains

a set of points all in the same phase at the same time.

Index of Refraction. A constant characteristic of a medium. It repre-
sents the ratio between the velocity of a wave in a standard medium and
the velocity of the wave in the given medium.

Diffraction. Bending experienced by waves while passing an edge or

especially while passing through a slit.

Polarization. The removal from a set of transverse waves of all except
those with the vibrations in a given direction.

Stationary Waves. A combination of a wave with its reflection. The
effect is to produce regions of no vibration called nodes, half a wave

length apart.

PROBLEMS

16-1. The velocity of a certain wave is 1,150 feet per second and its

frequency is 440 vibrations per second. What is its wave length?

16-2. The wave length of a certain wave is 0.0000589 centimeter, and
its velocity is 30,000,000,000 centimeters per second. What is its frequency?

16-3. Figure 16-6 is called a Huyghens construction, after the Dutch

physicist of that name who lived from 1629 to 1695. Make a similar con-
struction for the case of reflection, and show that the angle of reflection is

equal to the angle of incidence.

16-4. If two mirrors are held at right angles to each other, how many
reflections will be formed of an object held near the intersection of the two
mirrors? Draw lines to illustrate the various possible paths of the waves

emanating from the object to the mirrors and back.

16-5. Solve a problem similar to that in section 16-7, except that the
water wave passes from the shallow water to the deep water with an angle
of incidence of (1) 25 degrees; (2) 35 degrees. The second case is described

technically as total reflection.
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16-6. On the basis of the data in the problem of section 16-7, would you
expect the surf on a shelving beach to come in parallel to the shore, or at

an angle?

16-7. Give a reason for the wave length in figure 16-7 extending from
A to C rather than from A to5.

16-8. In figure 16-5, assume that the wave travels at the rate of 28

feet/second in medium I and 20 feet/second in medium 2. Determine
whether it would take a longer or a shorter time for the wave to go from
A to D by way of B or by a straight path



CHAPTER 17

Sound

17-1. Definitions. A psychologist and a physicist define sound

differently. According to the psychologist, sound is a sensation per-

ceived through the ear. The psychologist would go so far as to say
that in a desert where there was no one to hear, there would be

no sound! On the other hand, the physicist defines sound as a

longitudinal wave motion in the medium (usually air) which is in

contact with the car. Needless to say, we shall use the latter defi-

nition and study these waves.

17-2. No Sound In A Vacuum. Since sound waves exist in

a material medium, it follows that we must not expect sound to pass

through a vacuum. If a bell could be supported under the receiver

of an air pump in such a way that it did not touch anything, we
should be unable to hear it even while it was ringing. In fact, in an
actual experiment where an alarm clock is supported by a felt pad
under the receiver of an air pump, there is a very noticeable dif-

ference in intensity after the air is pumped out.

17-3. Speed of Sound. Everyone has had the experience of

watching a distant person swinging an ax or a hammer. Since light

travels much faster than sound, it is sometimes possible for this

person to get in one whole swing before the sound reaches the

observer. In this case an extra blow will be heard at the end after

the hammer stops moving. Whereas light travels at the rate of

186,000 miles per second, sound goes only 1,088 feet per second at

32F. and 1,129 feet/second at normal room temperature (68F.).
For many purposes the approximate value of 1,100 feet/second is a

convenient one to use. During a thunder storm it is often interesting
to use a still greater approximation for the speed of sound and allow

148
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five seconds to the mile. One can tell in this way with the aid of a

watch how near the disturbance is. The speed of sound has been

measured by several methods. The method of Kundl's tube will be

discussed in section 17-15; another procedure is a bit more obvious.

The distance between two hilltops is carefully determined by the

surveyor's methods. A cannon is placed on one hilltop. When the

cannon is fired, the interval between the flash and the report is

measured from the other hilltop. The required speed is the ratio be-

tween the distance and the time interval. We have seen that the

speed of any wave motion depends on two properties of the medium,
the elasticity and the density ; the speed is equal to the square root of

the ratio between the elasticity (bulk modulus) and the density. It

will therefore be true that every substance will transmit sound at a

rate peculiar to itself. Thus the speed of sound in water is about four

times as fast, and in iron about fifteen times as fast as in air. If two

experimenters placed themselves at opposite ends of a long steel

rail, one of them would hear twice a single tap made by the other,

once through the steel and again through the air.

17-4. Dependence of Speed of Sound On Temperature.
The reason is now apparent for the fact that sound has a speed at

32F. different from the value at 68F. Any agency that is capable
of affecting either the density or the elasticity of air can be expected
to affect also the speed of sound in air. To the two values given in

the previous section may be added: speed of sound is 1,266 feet per

second at 212F., 1,814 feet per second at W2F., and 2,2
(>7 feet per

second at 1,832F. At ordinary temperatures, the speed increases

about 1.14 feet per second for each Fahrenheit degree rise in tem-

perature. On the other hand, a change in pressure does not per-

ceptibly change the speed of sound because an increase of pressure

increases both the elasticity and the density in practically the same

proportion. Let us suppose, for example, that the barometer goes

up enough to add one per cent to the value of the bulk modulus;
then it will be found that the density also increases by one per cent,

and there is therefore no change jn the ratio of the elasticity to

the density.

17-5. Pitch, Loudness, and Quality. Three characteristics

of sound can be related to wave properties discussed in the previous

chapter.
The pitch of a sound is directly connected with the frequency of

the wave. The greater the frequency the higher the pitch. The
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human ear is capable of distinguishing pitches varying from 16 to

30,000 vibrations per second; some ears have a wider range than

others. If one musical note has twice the frequency of another, the

first is said to be an octave higher than the second. Occasionally a

pipe organ is built with one or two notes below the sixteen-per-second

limit just mentioned; these notes have to be felt rather than heard,

and yet they seem to improve the general effect.

The londness of a sound depends upon physiological factors, also

upon the amount of energy per unit of area which reaches the ear

per unit of time; the lattei in turn is proportional to the product of

the amplitude squared by the frequency squared. Thus from purely

physical considerations, it is easier to hear a high pitched note than

one of low pitch, assuming that both sounds are well within the

audible range. For instance, an orchestra needs but one piccolo

whereas several contra-basscs are necessary. The amplitude of a

sound wave is inversely proportional to the distance from the source;

therefore the intensity of a sound is inversely proportional to the

square of the distance from the source. This statement may also

be shown to be true by the following argument: Imagine two con-

centric spherical geometric surfaces, the radius of one being half that

of the other. The areas will then be in the ratio of one to four. If

a sound starts at the center and is transmitted in all directions, the

same quantity of sound that passes through one surface must also

pass through the other surface, but the quantity of sound that

passes through unit area of the inner spherical surface must be just

four times as much as that passing through unit area of the outer

surface, because the ratio of the areas is just one to four. Therefore

the sound will have four times the intensity at the inner surface. By
this argument, the inverse square intensity law would apply to

energy of projectiles as much as it would to waves; we shall therefore

expect to see that the inverse square law also applies to light. The
ear is sensitive to such an enormous range of lourlness values that

it has become customary to adopt a unit of loudness which is

logarithmic, the bcl. If the standard intensity is called /o, and the

intensity I which we wish to measure is such that

/ = (10) 7

then 7 is said to have a loudness of x bels with reference to 7 . A
loudness of x bels is the same as a loudness of IQx decibels, the latter

being the more usual unit. Like potential energy, the reference point

may be taken anywhere, but the custom is becoming more common
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to take 7 as the intensity which at a frequency of 1,000 vibrations

per second represents an amount of energy per second per square
centimeter at the eardrum of 10" ergs. (See section 3-12). If we
solve the equation just given for x, we obtain

* = logio (///o)

A three-place logarithm table will be found in appendix 8.

The third characteristic of a sound is its qualify. The quality of

the sound depends upon the shape of the wave. Another way of

saying the same thing is the following: the qual-

ity of a sound depends upon the number and

relative amplitudes of the harmonics present.

17-6. Harmonics. If we have a given

pitch, which means a sound of a certain fre-

quency, or, since wave length is equal to

velocity divided by frequency, a sound of a

certain wave length, then a harmonic is another

sound the wave length of which is one half, or

one third, or some aliquot part of the original

wave length. The sound with the original wave length is called the

fundamental tone or first harmonic. In figure 17-1, waves A and C
represent sounds of the same wave length and therefore of the same

pitch. B represents the second harmonic of A
;
a musician would say

that it was one octave higher than the fundamental. Although A
and C have the same pitch, they are different in quality because the

waves have different shapes. A represents the type of tone emitted

by a tuning fork or an open organ pipe when sounded gently, while C
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sounds like an open organ pipe blown a trifle more vigorously. C is

the result of adding the ordinatcs of A and ZJ; therefore we can

describe C as being the combination of A and its second harmonic

in such a way as to make the amplitudes take the ratio of two to one.

The French mathematician Fourier (1772-1837) discovered that any
wave, no matter how complicated its shape, is simply the com-

bination of its fundamental and some of its harmonics, each with

the proper amplitude and phase relation. A certain physicist once

amused himself by drawing a wave the shape of which was the same

as the profile of his wife's face, and then determining the amplitudes
of the harmonics necessary to give that shape!

17-7. The Doppler Effect. An interesting relation between

either the velocity of the source of the sound or the velocity of the

listener and the pitch of the sound is known as the Doppler effect.

Everyone has noticed how the pitch of a factory whistle suddenly
seems to drop as one rides by it in an express train, or how the pitch

of an automobile horn suddenly appears to a stationary observer to

drop as it passes him. In the first case the observer is moving toward

or away from the stationary source. In moving toward the source, he

encounters the waves a little faster than he would if he were station-

ary, the apparent frequency is increased, and he therefore hears a

slightly higher pilch than the whistle is actually emitting. In the

case of the approaching automobile horn, each wave is emitted from

a point slightly nearer than the point from which the preceding
wave was emitted, thus shortening the waves and raising the pitch.

It is, of course, possible for both source and observer to move at once.

The mathematical relations involved are expressed by the following

equation

, V - u
n =

-p n
\ - v

where
'
is the frequency observed, n the frequency emitted, V the

velocity of sound, u the velocity of the observer, and v the velocity
of the source, the positive direction for all three velocities being the

same, say for example toward the right.

17-8. Illustrations of the Use of Doppler's Equation. (1) Let the

source be stationary (r
= zero) and let the observer be moving toward the

source with one fourth the velocity of sound, u is therefore equal to F/4,
and the equation becomes n' - ( V + 7/4) n/ K, or, n' = 15/4) n. A
musician would interpret this result by saying that the pitch observed was
a major third above that emitted. (2) Let the observer be stationary and
let the source move away from the observer with the velocity of sound. In
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this case, M = 0,
= T

7
,
so that the equation becomes w' = Vn/2 7,

or nf = w/2. This time the musician would say that the observed pitch
was just one octave below the emitted pitch. (3) If the velocity of the

source and the velocity of the observer are in the same direction and equal
in magnitude, it will be found that n

f = n\ no change in pitch. (4) The

speeds of most projectiles arc greater than that of sound. During World
War II, the boys used to refer to certain shells as "whiz-bangs" because

they heard them whizzing by before they heard the bang of the original

detonation. If we try to compute the observed frequency with a stationary
observer and a velocity of the source toward the observer equal to twice the

velocity of sound, we shall have u = and v = 2V. Our equation now
becomes ;/' = Vn/( V 2 T), and when we solve it, we get a negative value

for n' which has no physical meaning.

17-9. Illustrative Problem. Two automobiles arc traveling in opposite

directions, on the same road, one at 20 miles per hour and the other at 40

miles per hour. The horn of the former is sounding (frequency - 440 per

second). What frequency does the man in the second car hear before and
after meeting?

Since nothing is said about the temperature, we shall round off the

velocity of sound to 1,100 feet per second and change it to miles per hour to

correspond to the other two velocities, obtaining V =~ 750 miles/hour;

considering it positive settles the question of the signs of the velocities. We
also have it = 40 miles/hour before meeting, the minus sign representing
the fact that the observer is moving in a direction opposite to the motion

of the sound wave. And v = + 20 miles/hour, plus because both the

source and the *>ound wave are traveling in the same diiection, toward the

observer, n = 440/second. If we substitute the units into the equation,
the velocity units will all cancel, therefore the frequency unit on the left

will be determined by the frequency unit on the right- The equation
therefore becomes --

40)

n' is therefore (79/73) (410) or 476 vibrations per second.

After meeting, if we again regard the 750 miles/hour as positive, since

the sound is now overtaking the observer, we must consider u +40
miles/hour and similarly, v = 20 miles/hour. The new equation is

therefore

This time n' = (71/77) (440) = 406 vibrations per second. That is, while

the true frequency is 440 per second, the apparent fiequency changes from

476 per second to 406 per second at the instant of passing, or nearly three

semitones.

17-10. Reflection of Sound. Since sound is a wave motion,
it is subject to reflection at a boundary of mediums. Several ap-

plications of this will immediately occur to the reader. An echo is
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a case of simple reflection of sound. When the enclosure is so ar-

ranged that the sound is subject to more than one reflection, we say
that we have a case of reverberation. Reverberation is observed in

large auditoriums, under large bridge arches, especially over a water

surface, and above all during a thunderstorm within the region oc-

cupied by the falling rain. In this case there is a distinct difference

in density between the part of the atmosphere above the clouds

where fair weather prevails with very little water vapor mixed with

the rest of the air, and below the clouds, where not only is the

relative humidity* one hundred per cent, but where there is a con-

siderable quantity of liquid water as well; therefore the sound of the

thunder is reflected back and forth between earth and cloud a great

many times before being completely absorbed. The speaking tube

is another application of the principle of reflection; the sound is

forced to follow the course of the tube because every time it reaches

the boundary of the tube it is reflected back in again. In bodies of

water, "sounding" is often accomplished by noting the time re-

quired by sound to be reflected from the bottom.

17-11. Sound Represents Energy. Sound should be con-

sidered as a form of energy, along with light, heat, electrical, me-

chanical, and chemical energy. Three things can happen to a sound

wave: (1) it is gradually converted into heat energy as it passes

along through a given medium, (2) upon reaching the boundary of

the given medium, some of the sound, as we have seen, is reflected,

and (3) some passes through the boundary and obeys the laws of

refraction. But in any case, the total energy remains constant.

17-12. Time of Reverberation. In designing large audi-

toriums, an important consideration is the so-called time of rever-

beration. This is directly proportional to the volume of the hall and

inversely proportional to the total absorption of the walls. If the

measurements are in feet, the equation is

V
t = 0.05 -7A

where / is the time in seconds of reverberation, V the volumef (in

cubic feet) and A the absorption of the walls of the hall. An open
window in the room is equivalent to almost perfect absorption be-

cause practically no sound returns from the window into the room.

* That is, the proportion of water vapor in the air is just as great as is possible at the

given temperature.

t Notice that V is volume in this section while in section 17-7, V represents the velocity of

the wave. It is unfortunate that there are not more letters in the alphabet.
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It is therefore customary to express the absorption as equivalent to

that of so many square feet of open window area. For example, if

the absorption coefficient of a certain carpet is 0.2, which means
that it absorbs one fifth as well as an open window of the same area,

then A for that carpet is its area in square feet times 0.2.

The reverberation time should not be too long, thereby causing
confusion between successive syllables of a speech, nor should it be

too short, thereby rendering the room "dead" for musical perform-
ances. About 2.25 seconds is a reasonable value for a large hall

used chiefly for music, while about 1.25 seconds is better for an

ordinary-sized theater. Formerly the reverberation time of a radio

broadcasting studio used to be reduced somewhat below normal, so

that when the additional reverberation at the receiving end was

added, the total would come out right. But radios arc used mostly
in small rooms, automobiles, and even outdoors, that is, in places
where the reverberation time is practically zero, therefore it is the

modern custom to supply the necessary reverberation at the studio.

17-13. Diffraction of Sound. The wave lengths of ordinary
sounds are sufficiently great to produce a large amount of diffraction.

Occasionally it is desirable to reduce the diffraction. It will be re-

membered (see section 16-8) that the amount of diffraction or

"bending around corners" is proportional to the wave length, and

what is more important in this case, inversely proportional to a

linear dimension of the opening out of which the sound proceeds.

This means that it is nearly as easy to understand a speaker when
he has his back turned as when he faces you. On the other hand,
if the speaker can do something to increase effectively the size of his

mouth, such as using a megaphone, a smaller percentage of the sound

energy will be diffracted and a greater percentage will be directed

straight ahead. The writer noticed an illustration of diffraction of

sound a number of years ago in a railroad station. A steam radiator

was hissing; hissing means high frequency and therefore a short

wave length. Suddenly the hissing stopped a moment and then

continued. On looking up from the newspaper, it was seen that a

very large woman had walked by the radiator and had moment-

arily cast a "sound shadow." If the sound had been of greater

wave length (lower pitch), it would have bent around the obstruction.

17-14. Interference of Sound. At a given instant the two

prongs of a tuning fork are vibrating in opposite directions. A tuning
fork designed to vibrate at the rate of 440 per second (the musician's

A) produces a wave length of 2.50 feet. If the fork be set vibrating
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and held so that one prong completely screens the other, or be

turned at right angles to this position so that each prong vibrates

at right angles to the line connecting the fork to the ear, the sound

is loud. If, on the other hand, the fork be held obliquely, so that

one prong just does not screen the other, two sets of waves will

reach the air, one practically 180 degrees out of phase with the other

(since the distance between the prongs is small compared with 2.50

feet); the result of these two sets of waves will be comparative
silence. This furnishes us with a good example of interference of

waves. We get another type of interference when two sound waves

of the same wave length travel in opposite directions through the

same medium. At certain points called nodes (see section 16-11), the

vibrations cancel each other. Examples of this effect will be found

in the case of Kundt's tube, described in the next section, in organ

pipes, and in violin strings; stationary waves or standing waves is the

technical term used to describe the resulting condition of vibration.

A third type of interference obtained with sound waves is encount-

ered when two waves of slightly different frequencies are produced

simultaneously. There will now be times when the waves annul

each other, alternating with times when the waves reinforce each

other. This succession of variations in intensity is called beats
;
the

number of beats per second is equal to the difference in frequency
of the two waves.

17-15. Kundt's Tube. The fact has been noted in section 16-

11 that in the case of standing waves the distance from a given node

to the second node beyond is one wave length. If, in addition, we
also know the frequency, we can use the equation V = n\ (section

16-4) to compute the speed of the wave. This is the so-called

Kundf's tube method. A glass tube, containing a sprinkling of

powdered cork along its entire length, is placed in a horizontal

position with one end closed. A brass rod, carrying a disk at one

end, is clamped at its center by means of a vise, so that the disk

fits loosely into the glass tube. Thus the center of the brass rod is a

node and each end is an antinode. The disk should be near the open
end of the glass tube, and when its exact position has been located

experimentally, the disk, although it represents an antinode of the

motion of the brass rod, will be nearly an antinode of the vibrating
air column. See figures 16-7. The two ends of the brass rod are set

vibrating longitudinally in opposite directions by grasping the rod

with a piece of chamois dusted with powdered rosin, and pulling
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so that the chamois slides along the rod. The result is a shriek of

high frequency and consequently short wave length, the pitch de-

pending on the length of the brass rod, a known quantity in the

case of our experiment. The experimental procedure is to make
the brass rod vibrate repeatedly; the motion of the disk sets up
stationary waves in the glass tube when the proper position of the

disk is found; the stationary waves leave the cork powder at rest at

the nodes and set it into vibration at the antinodes, so that the con-

figuration of the cork dust clearly reveals the position of the nodes,
and consequently the wave length of the sound waves, by means
of which the speed can be computed.

17-16. Illustrative Problem. A certain Kundt's tube apparatus uses a

brass rod with a frequency of 1,680 vibrations per second. If, after adjusting
the position of the disk, the little piles of cork dust are just four inches apart,
find the speed of sound in air, also the temperature.

The wave length corresponding to this particular frequency is twice

the distance between two successive nodes, or right inches, or 0.667 foot.

We therefore have, X = 0.667 foot, and n = 1,680 per second. Since the

speed of the wave is the product of these two, it follows that V (0.667)

(1,680) = 1,120 feet per second. 1,120
-

1,087 = 32 feet per second more
than the value of the speed of sound at S2F., and corresponds to a tem-

perature of 60F. since the speed increases 1.14 feet per second for each

Fahrenheit degree the temperature rises.

17-17. Organ Pipes. The motion of the air in a closed organ

pipe is exactly the same as in Kundt's tube, the closed end being a

node, and the end containing the reed being an antinode. This

means that the closed organ pipe is one quarter of a wave length

long, or three quarters, or five quarters, and so on. Another way of

saying the same thing is as follows: The fundamental tone of a

closed organ pipe has a wave length four times the length of the

pipe; the second harmonic (which is often called the first overtone)

has a wave length four thirds the length of the pipe, and so on.

In the case of the open organ pipe, both ends are antinodes. Thus

the length of the pipe is one half a wave length, a whole wave length,

three halves wave lengths, and so on; and the fundamental and

other harmonics have wave lengths of twice the length of the pipe,

the length itself, two thirds of the length, and so on.

17-18. Illustrative Problem. Find the wave length of the fundamental

and of the first two overtones emitted by an eight-foot closed organ pipe;

by an eight-foot open organ pipe.

Since one end of a closed organ pipe is a node and the other end is an

antinode, the shortest length of a pipe relative to a wave length is one
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quarter of a wave length; the next shortest, three quarters; and the next,

five quarters. Thus we have

for the fundamental 8 = X/4 and X = 32 feet

for the first overtone 8=3 X/4 and X = 10.67 feet

for the second overtone 8 = 5 X/4 and X = 6.40 feet

Since both ends of an open organ pipe are antinodes, the shortest length
of a pipe relative to a wave length is one half a wave length, the next

shortest, one wave length, and the next, three halves of a wave length.

Therefore,

for the fundamental 8 = X/2 and X = 16 feet

for Ihc first overtone 8 = X or X = 8 feet

for the second overtone 8 = 3 X/2 and X = 5.33 feet

17-19. Violin Strings. There are three ways of varying the

pitch of a violin string. The frequency is inversely proportional to

the length of the string, directly proportional to the square root of

the tension, and inversely proportional to the square root of the

linear density (mass per unit length). In accordance with the last

fact, the G string, from which are obtained

the notes of the lowest frequency, is loaded

to increase the linear density. The loading

consists of winding the string with copper,

silver, or some other metal wire. Tuning is

accomplished by changing the tensions, and

tones of different pilch arc obtained in play-

ing by changing the effective length of the

string, which is accomplished by pressing

the siring against the finger board at various

points with the lingers.

SUMMARY OF CHAPTER 17

Technical Terms Defined

Sound. Congressional waves in the medium (usually air) which is in

contact with the ear. Sound is a form of energy.

Fitch. A physiological effect which depends on the frequency of the sound.

Loudness. A physiological effect which depends on both the amplitude of

the sound wave and its frequency.

Quality. A physiological effect which depends on the shape of the sound
wave.

Harmonic and Overtone. A sound wave the frequency of which is an

integral multiple of a given fundamental wave. The fundamental is the

first harmonic. Sometimes the second harmonic is called the first over-

tone, etc.
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Doppler Effect. The effect whereby the apparent pitch of a sound depends
on the relative velocity of source and observer.

Reverberation Time. The length of time that a sound of given intensity

persists in a given auditorium.

PROBLEMS

17-1. At what temperature will the speed of sound be just 1,100 feet

per second?

17-2. Find the speed of sound at 50F; at 100F.

17-3. If the man described in section 17-3 is swinging his hammer at

the rate of three swings every two seconds, how far away is lie?

17-4. In the cannon method of determining the speed of sound, what

percentage correction should be made for the speed of light? How will this

correction compare with the error introduced by the experimenter's
"reaction time?"

17-5. If the steel rail in section 17-3 is 30 feet long, what is the time
interval at one end between the sounds of a single tap at the other end?

17-6. How many octaves can the average man hear?

17-7. A certain sound is just loud enough to be heard one inch away.
How far away could one be and still hear a sound one million times as loud?

17-8. A whistle with a frequency of 600 vibrations per second is blowing
close beside a railroad track. What frequency will a passenger in a train

going 60 miles per hour hear as he approaches the whistle? As he recedes

from the whistle? Assume the velocity of sound to be 1,100 feet per
second.

17-9. The problem of section 17-9 resulted in a sudden drop in pitch;
what condition would have to be realized to result in an apparent increase

of frequency?
17-10. A certain auditorium has a volume of 150,000 cubic feet and a

total absorption equivalent to 1,800 square feet of open window. Find the

reverberation time. A compact audience fills the hall, adding 4,200 square
feet to the absorption. What is now the time of reverberation?

17-11. There are three tuning forks lying on a table. The frequencies of

two of them are stamped upon them as 256 and 267 vibrations per second.

The third fork makes four beats per second when sounded with the 256
fork and seven beats per second when sounded with the 267 fork. What is

the frequency of the third fork?

17-12. Remembering that the two ends of the metal rod in the Kundt's
tube apparatus are antinodes, we may use the experiment to determine

the speed of sound in the metal. Jf the speed of sound in the air is

330 meters/second, if the average distance between adjacent cork dust

piles is 8.56 centimeters, and if the metal rod is 80 centimeters long, find

the speed of sound in the metal.

17-13. If the ratio between the frequencies of any two adjacent notes

on a piano, that is, notes a semitone apart, is 1.0595, show that the ratio

between the frequencies of notes a whole tone apart is 1.1225.

17-14. A closed organ pipe is one foot long and emits a musical tone the

frequency of which is 270 per second. What is the speed of sound in air?
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17-15. An open organ pipe is 2.25 feet long. Find the frequency of the

third overtone of this pipe.

17-16. What is the effect on the pitch of keeping the length and tension

constant in a violin string and increasing the linear density four times?

What is the effect on the pitch of keeping the length and linear density con-

stant and increasing the tension four times? What is the effect on the pitch
of keeping the tension and linear density constant and decreasing the

length to one fourth of the original value? What is the effect on the pitch
of increasing both the tension and the linear density four times and at the

same time reducing the length to one fourth of its original value?



CHAPTER 18

Heat and Temperature
The Two Laws of Thermodynamics

18-1. Heat as a Form of Energy. Heat is another form of

energy. This is equivalent to saying that, given a quantity of heat,

we should be able to obtain work from it. As an illustration of this

statement, we may cite the fact that with heat obtained from the

burning of coal we are able to drive a steam engine. But it is im-

possible to convert a given quantity of heat entirely into work, or,

in fact, into any other form of energy. The general statement may
be made that whenever an attempt is made to convert any form

of energy into some other form of energy, heat is one of the by-

products. The only exception to this statement is the case when we

attempt to change some other form of energy into heat, its in an

electric stove. In this case there is no by-product; the process is

100 per cent efficient; nothing but heat is produced! From these

statements the deduction may be made that gradually all other

forms of energy are being reduced to heat and that eventually there

will be no other form of energy in existence.

18-2. Theoretical Basis of Temperature. If a given sub-

stance such as paper, water, salt, sugar, or mercury could be suffi-

ciently divided, a point would be reached when further subdivision

would result in a change in the nature of the substance. The
smallest particle of a given nature that can exist is called a molecule.

To be sure, a molecule is a group of atoms, and before we get

through, we shall also have something to say about the internal

structure of atoms, but for the purposes of this chapter, it will be

sufficient to regard the molecule as the smallest particle of a given

161
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nature. If the molecules of a body were all at rest relative to one

another, the body would be completely cold and we should say that

its temperature was at the bottom of the thertnometric scale. On a

Fahrenheit thermometer this would be 459 degrees below zero. On
another type of thermomctric scale used in scientific work, the

corresponding reading would be minus 273 degrees centigrade. Heat

energy represents a random chaotic motion of the molecules of the

body involved, relative to each other,

and the higher the temperature, the

greater is this irregular motion. In a

liquid it is possible to detect motion of

this kind in particles considerably

larger than molecules by means of a

compound microscope. Any emulsion

consisting of very fine particles in sus-

pension may be used for this purpose;
smoke will also do; and it will be ob-

served that the motion (called the

Brownian movement) is incessant as

long as a given temperature is main-

tained. This means that the molecules must be perfectly elastic.

If the temperature is increased, the particles will move about more

rapidly; if the temperature is reduced, they will move more slowly.

18-3. Conversion of Energy of Motion Into Heat. A
moving body may be made to do work. Examples of this may be

found in the fact that the kinetic energy of a moving flywheel on a

buzz-saw may be made to saw off a stick of wood after the power
has been cut off. Or a moving stream of water may be made to

turn a turbine. Since energy can neither be created nor destroyed,
what becomes of this energy when the body stops moving? In every
case of this kind, some heat is always produced, and in many cases

the energy is entirely converted into heat. As an illustration of the

latter case, carried to a theoretical extreme, imagine a piece of

lead pipe with no heat in it (absolutely cold) but moving as a

whole at a high rate of speed. The piece of lead is to be thought of as

consisting of molecules, all of which are moving in the same direc-

tion, that is, in the direction in which the piece of lead as a whole

is going. Since the lead is absolutely cold, the molecules have no
random motion relative to one another. Suppose now that the lead

strikes a hard, smooth portion of the earth, large enough to be "im-

movable," and also absolutely cold. What will become of the energy
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of the moving lead? The answer is that the individual molecules

will maintain the same average speed that they had before, but the

motion will be quite chaotic, random, irregular. The energy of the

motion has been changed to heat.

18-4. Orderly Motion Tends to Become Chaotic, But
Chaotic Motion Does Not Tend to Become Orderly.
Another idealized illustration of the same thing is as follows:

Imagine a billiard table with a row of perfectly elastic billiard balls,

all moving parallel with one another at a certain instant, but not

necessarily parallel with the edges of the table. If the table could

be absolutely without friction and the edges perfectly elastic, there

would be nothing to stop this motion, therefore under our sup-

positions the motion would continue forever. But the changes in

direction due to the rcboundings would result in a chaotic motion

of the billiard balls instead of the original parallel motion. The

question now arises, "How long will it be before by chance all the

billiard balls will again be moving parallel with one another at some

given instant?
" With a given number of billiard balls and given

dimensions of the table, it is possible to compute the answer to this

question, and it will come out a surprisingly large number of years.

Let us also ask the corresponding question about the piece of lead

in the preceding paragraph, or of any rock lying by the wayside.
What is the chance that each of the molecules, moving with terrific

speeds but in all possible directions, will at some future time all

happen to go in the same direction at once? The answer is about

one chance in infinity, which is the mathematician's way of saying
no cfiancc at all. Orderly motion tends to become chaotic, but

chaotic motions do not of themselves tend to become orderly.

It should now be clear why it is impossible to change the heat of

a piece of lead completely back into energy of motion of the piece

of lead as a whole, or in other words, why a body left to itself will

never become completely cold.

18-5. Distinction Between Heat and Temperature.
Temperature means the degree of hotness of a body and is not con-

nected with the mass of the body, whereas the amount of heat in

a body cannot be computed unless we know both the mass or

weight of the body as well as its temperature and the material of

which the body is composed. Thus if two bodies are made of the

same material and weigh the same, the one with the higher tern

perature will contain the more heat. But if two bodies are made of

the same material, have the same temperature, but do not weigh
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the same, the heavier body will contain more heat than the lighter.

In fact there is actually more heat in a tub of lukewarm water than

in a teacup of boiling water.

18-6. Properties That Depend on Temperature.
Temperature is proportional to the average energy of translatory
motion (translatory kinetic energy) of the molecules of the object
under consideration. When the temperature changes, various other

properties of the object also change; it is from a measurement of

these other properties that we are enabled to determine the tem-

perature. Some of these other properties are length, volume, elec-

trical resistance, vapor pressure, character of radiation emitted, and
thermoelectric effect. Most thermometers depend upon the fact

that when the temperature changes, volumes change.

18-7. Temperature Scales. We use a number of tempera-
ture scales. The two scales most convenient for everyday usage in-

volve negative values for low temperatures, so that for scientific

work, it is convenient to have in addition two absolute scales, each

of which has zero for its lowest value. The ordinary Fahrenheit

scale has as its zero point the lowest temperature conveniently
obtained with a mixture of salt and ice, while the 100 point is about

as high as the temperature would rise on a very hot summer day.
The centigrade scale has the freezing point of water for its zero and
the boiling point of water for the 100 position. On the Fahrenheit

scale, water freezes at 32 and boils at 212, that is, there are 180

degrees between the two points. Figure 18-1 indicates the relative

readings of the four scales which have been mentioned. The upper

FAHRENHEIT ABSOLUTE 459 491

aNTtGRADt ABSOLUTE OR KEVIN
AWOLUTE im

Z73 293
VMTCR

373
WATER
SOIL*

Figure 18-1.

and lower ones are the two absolute scales and read zero at the

lowest theoretical temperature. Although this temperature has
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never been reached, deHaas, a Dutch physicist, has succeeded in

getting to within 0.0044 of it. The existence of the absolute zero

is indicated by a number of physical facts, chief among which is the

behavior of gases; and there is very little doubt that it is located

273.15 below the zero of the centigrade scale. We shall round this

off to 273. Thus, on the centigrade absolute scale which is often

called the Kelvin scale, water freezes at 273 and boils at 373.

18-8. How to Change from One Scale to Another. Since

there arc 180 Fahrenheit degrees between the freezing and boiling

points of water and only 100 centigrade degrees in this same in-

terval, each Fahrenheit degree is 100/180 or 5/9 as large as a centi-

grade degree. Thus the boiling point of water on the Fahrenheit

absolute scale is 9/5 of 373 or 671. Similarly the freezing point
of water is 491 F. Abs., which is 9/5 of 273K. Readings on the

Fahrenheit absolute scale are 459 greater than those on the ordinary
Fahrenheit scale, while readings on the Kelvin scale are 273 more

than readings on the ordinary centigrade scale. To complete the

system of changes, it is necessary to devise a method of changing
from the ordinary Fahrenheit to the ordinary centigrade scale.

Suppose it is desired to express normal room temperature 68F. as

a centigrade reading. First, by subtracting 32 from 68, we see that

normal room temperature is 36 degrees above the freezing point
of water. 5/9 of 36 is 20, so that these 36 Fahrenheit degrees cor-

respond to 20 centigrade degrees, and since on the centigrade scale

water freezes at 0, 20C. is the result we are looking for. If we ex-

press this result algebraically, we find that

tc =
-f~

(IF
-

32)

expresses the numerical operations that we have just performed,
where tc represents the temperature on the centigrade scale and tp

on the Fahrenheit scale. If, however, our problem was to change
20C. into the corresponding Fahrenheit reading, the argument
would run as follows. 20C. is 20 degrees above the freezing point

on the centigrade scale. Since the Fahrenheit degrees are smaller,

there will be more of them in the same interval, namely 9/5 of

20 or 36 degrees. The Fahrenheit temperature which is 36 degrees

above the freezing point (32F.) is 36 + 32 or 68F. This process

may be summarized by the equation

tp -
-|-

tc + 32

which after all is nothing but the previous equation solved for tp .
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18-9. Illustrative Problem. (1) Change 15F. to centrigrade, Fahren-
heit absolute, and Kelvin readings. (2) Change 15C. to the corresponding
values on the other three scales.

(1) To change Fahrenheit readings to centrigrade, use the equation

tc =
-J-

(/,
-

32)

where tF = IS degrees. Therefore tc = (5/9) (15
-

32) = (5) (
-

17)/9
= 9.44C. Since the zero point on the Kelvin scale is 273 degrees below
that on the centigrade scale, the Kelvin temperature corresponding to

15 F. or - 9.44 C. is - 9.44 + 273 or 263.56. The corresponding

temperature on the Fahrenheit absolute scale is 15 + 459 or 474. As a

check on these results we may notice that five ninths of 474 is 263.3. Since

it is understood that problem results are to be reported to slide rule accu-

racy only, the answers to this problem should be reported: 9.44 C.,

474 F. Abs., and 264 K.

(2) This time we start with

*p = 4" tc + 32
o

where lc = 15. Therefore tp = (9/5) (15) + 32 = 135/5 + 32 = 27 +
32 = 59 F. Note that in this equation the parentheses do not include

the 32. The Fahrenheit absolute reading corresponding to 59 F. is 59 +
459 or 518 F. Abs. The Kelvin reading corresponding to 15 C. is 15 +
273 or 288 K. As a check, we note that (9/5) (288) = 518.

18-10. The First Two Laws of Thermodynamics. The law

of conservation of energy states that energy can neither be created

nor destroyed. Since heat is a form of energy, when a certain

quantity of heat disappears from one body it will be found to have

transferred itself to some other body, providing that it has not

been changed into some other form of energy. This statement of

the law of conservation of energy applied to heat is called the first

law of thermodynamics. The second law of thermodynamics goes on

and states that when a quantity of heat transfers itself from one

body to another by natural processes, it will always be found that

the first body is at a higher temperature than the second. That is,

heat will not of itself pass from a cold body to a hot body in such a

way as to make the cold body colder and the hot body hotter.

18-11. Generalization of the Second Law. The second
law of thermodynamics is capable of generalization in such a way
as to apply to things other than heat. It has already been stated

that heat represents a chaotic motion of the molecules of a body.
If we now return to the illustrations in sections 18-3 and 18-4, we

may say that the second law states that it is more natural for the
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molecules of the piece of lead mentioned there to change from the

first condition into the second condition (orderly motion to chaotic

motion) than it is for them to change from chaos to order. If all the

molecules of a rock, each one of which has a velocity measured in

miles per second in perfectly random directions, should suddenly all

commence to move in the same direction at the same time, it might
be extremely unfortunate for the innocent bystander! That this

new statement of the second law is equivalent to that made in the

preceding paragraph will be evident when we consider that there is

less randonlness of molecular motion in two bodies, one of which

has one temperature and the other another, than if they both have

the same temperature. Perhaps this will be seen more clearly if we

exaggerate to the extreme case where all the heat is transferred from

one body to the other, so that the first is left completely cold and

the second is made quite hot. If the bodies are of equal weight, just

half of the chaos has now been made into complete order. But this

is just the sort of thing that the second law says cannot happen by

itself because it involves making the hot body hotter and the cold

body colder till the limit is reached. Thus the second law of thermo-

dynamics may be generalized to read, whenever inanimate objects

are left to themselves the tendency is always from order to chaos,

and never in the other direction. If one should leave some papers

piled neatly upon his desk, leave the room, return and find them

scattered all over the floor, he would be justified in saying that some
inanimate agency such as the wind was responsible. If, however,
he should leave the room in this disarray, return a second time, and
find the papers piled neatly upon his desk in their original order,

he would never be justified in saying that a second gust of wind was

responsible. It would be necessary to say that the second case in-

volved an act of intelligence, and should therefore not be discussed

in a course in physics.

18-12. Entropy. Efficiency of a Heat Engine. In a more
extended course we should learn that entropy is a quantitative
measure of the amount of randomness in a system, and by applying
both the first and second laws of thermodynamics, we could dis-

cover that the maximum efficiency of a heat engine, say a steam or

gasoline engine, operating between two given temperatures, is equal
to the difference between those two temperatures divided by the

higher temperature expressed on the absolute scale. For example,
if the steam in a steam engine is at a temperature of 300F. and the

condenser is maintained at a temperature of 200F., then the
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thermal efficiency is (300
-

200)/(300 + 459) or 100/759 or 0.1318

which is 13.18 per cent. Due to other losses, the thermal efficiency

must be regarded as the maximim efficiency possible at the given

temperatures and therefore as an upper limit to the actual efficiency.

SUMMARY OF CHAPTER 1 8

Technical Terms Defined

Heat. A form of energy which consists of the combined energy of sepa-

rate molecules of a body.

Temperature. A quantity proportional to the average translatory kinetic

energy of a single molecule of the body concerned.

Absolute Temperature. Temperature expressed on a scale such that the

lowest possible value is zero.

Laws

First Law of Thermodynamics. A special form of the law of conservation

of energy which holds when heat energy is involved.

Second Law of Thermodynamics. Heat will not of itself pass from a

given body to another body of higher temperature.

Second Law Generalized. In inanimate nature, order tends to chaos.

Order itself is a sign of intelligence, which is not one of the things studied

in physics.

PROBLEMS

18-1. Change the following temperatures to centigrade: 86F., 500F.,
5000F., 0F.,-40F., -273F.

18-2. Change the temperatures of the preceding problem to Kelvin.

18-3. Change the temperatures of problem 18-1 to Fahrenheit absolute.

18-4. What simple relation exists between the answers of problem 18-2

and 18-3?

18-5. Change the following temperatures to Fahrenheit: 5000C.,
500C., 50C, -40C., -200C.

18-6. Find the Kelvin temperature corresponding to 574F.

18-7. Using the data in figure 18-1, make four graphs on the same chart
in which Kelvin temperatures are plotted along the -Y-axis while along the
F-axis we have (1) Fahrenheit absolute, (2) ordinary Fahrenheit, (3)

ordinary centigrade, and (4) Kelvin temperatures plotted. Do any of these

four lines cross each other, and if so, where?
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18-8. A turbine operates with saturated mercury vapor from a boiler at

840F., exhausting into a condenser at 350F. Find the maximum efficiency

possible with an ideal heat engine operating under these conditions.

18-9. Experiments made recently indicate that the efficiency of the

human body operating between the temperatures of 98.6F. and 68.0F. is

about fifteen per cent, and is furthermore greater than zero when the tem-

perature of the surroundings is equal to the body temperature. Compute
both thermal efficiencies. Have you an explanation of the discrepancy?



CHAPTER 19

Heat Transfer

19-1. Three General Methods of Heat Transfer. The engi-

neer is frequently faced with the problem of transferring a quantity
of heat from one place to another, also with the opposite problem
of insulating buildings to prevent heat transfer. A steam heating

plant is an excellent illustration of the first situation. If we trace

the path of the heat in a plant from the time it is produced by the

combustion of the fuel, we shall find that three different methods
are utilized in delivering the heat ultimately at the place where we
want it: conduction, convection, and radiation. If we generalize
these three processes, we shall find that they include all possible
methods of transferring heat.

19-2. Conduction. If we heat one corner of a solid object,

we shall find very soon that some of this heat is transferred to the

neighboring portions of the solid. Interpreting this in terms of

molecules, we can say that if the molecules of one portion of a solid

object are set into agitation, this motion will gradually be com-
municated to the neighboring molecules. A similar situation might
be imagined as follows: suppose a large crowd of very hot-tem-

pered, pugnacious men is standing quietly in a room. If a fight

starts at one point of the room, we can imagine it spreading in

about the same way that the molecular action spreads, except that

there is a law of conservation of energy and unfortunately no cor-

170
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responding law of conservation of belligerency. The rate at which

heat is conducted through a solid depends upon three factors:

(1) the differences in temperature between the two surfaces,

(2) the material of which the solid is made, and (3) the ratio of its

cross section to its thickness. The conductivity of silver is nearly

6,000 times as much as that of asbestos.

In a steam heating plant, the heat passes by conduction through
the shell of the boiler into the water, and later passes by conduction

from the hot steam through the material of the radiator to the

outer surface of the radiator.

19-3. Computation of Transfer of Heat By Conduction.

If we let II stand for the heat that gets through a slab of material

of conductivity C, of thickness rf, and cross-sectional area A, in

time /, when the temperature of the hot side of the slab is /2 and
that of the cooler side is /i, we can make the statement that

That is, the heat conducted through the slab is proportional to

the four factors time, temperature difference, area, and conduc-

tivity, and inversely proportional to the thickness of the slabs.

We have seen that there are two common units by which heat

energy is measured, the British thermal unit and the Calorie. (See

section 3-12). The combination of units that may be used in this

equation are rather numerous, the unit of C taking up the slack,

so to speak. For example, if // is in Calories, / in seconds, /2 and t\

in centigrade degrees, A in square meters, and d in meters, we can

express C in Calories per second per degree centigrade per meter,

and the units on the right side of the equation will reduce to Cal-

orics. Or if we are using English units, // is in British thermal units,

t in seconds, /2 and /i in degrees Fahrenheit, A in square feet and

d in feet. This time C is expressed in B.t.u. per second per degree
Fahrenheit per foot. However there is nothing to prevent the

English engineer from expressing // in British thermal units, t in

days, /2 and t\ in Fahrenheit degrees, A in square feet, and d in

inches, and he often does it! In this case C must be expressed in

B.t.u.-inches per day per square foot per degree Fahrenheit.

19-4. Numerical Values of Heat Conductivities. A table of heat con-

ductivities follows in the first two sets of units just mentioned.
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Substanc* Cal./sec.-deg. C-mcter B.t.u./sce.-dez. F-Joot

Air 00000054 00000036

Aluminum 0.0422 0.0284

Asbestos 0000019 0.000013

Brass 0.0204 0137

Brick 000012 000008

Copper 00975 00656
Cork slabs 000010 0000067

Flannel 00000035 00000024

Glass 000018 000012

Granite 0005 10 000 343

Hair felt 000009 000006

Ice 0.00057 (KXW8

Iron 00166 00112

Lead 000836 01X1562

Magnesia pipe covering 000016 00001 1

Marble 0000470 OOOOU6
Sand 0000093 0000063

Sawdust 0000015 0000010

Silver 0.1096 00737

Slate 0000272 0000183

Snow 0000026 0(XKW)17

Tin 001S19 001021

Water OOOOM8 0000093

Wood across grain 000009 (NXXXtt

Wood along grain 0(XK)3 (XKX)2

Zinc 00284 00191

Silver and copper are the best conductors of heat known, whereas sub-

stances like hair felt, asbestos, and dry sawdust are among the best in-

sulators, often because they imprison a quantity of air, which is an ex-

tremely poor conductor.

19-5. Illustrative Problem. Calculate the amount of heat that will

escape from a house in 24 hours through a glass window of 2 square yards

area, one eighth of an inch thick if the temperatures are 70F and 10F
outside. If the heat of combustion of coal is U, c)00 B.t.u. per pound, how
much coal must be burned per day on account of this one window?

Using the symbols of section 10-3, t is 86,400 seconds, /2 is 70, fi is 10,
A is 18 ft.

2
,
T is 0.00012 B.t.u. /sec-cleg, /'"-foot, and d is 0,01042 foot.

Substituting these values into the equation of that section gives

n (80,400) (70
-

10) (18) (0.00012) _
// = ---

)T2
1,075,000 B.t.u.

Dividing this by 13,900 B.t.u./lb. gives 77.3 pounds of coal per day. This

assumes that none of the heat of combustion escapes up the chimney.

19-6. More Complicated Cases. In most practical prob-

lems, the same heat flows through several types of material. For

example, the wall of a house could consist of several inches of brick,

an air space, and an inch of wood. In this type of problem, a sep-

arate equation must be set up for each material involved. One of

the unknowns will be the heat //, which is the same in each equa-
tion. The time and cross-sectional areas will likewise be the same
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in each equation. The additional unknowns will be the intermediate

temperatures at the boundaries of the various materials.

19-7. Convection. Conduction of heat can take place in

liquids and gases as well as in solids, but in these two cases the

situation is complicated by the fact that in fluids (gases and liquids)

convection is much more important than conduction. A hot fluid

usually weighs less, volume for volume, than that same fluid at a

lower temperature. This means that we shall generally find the

hottest air near the ceiling and the coldest air near the floor. If we
heat a portion of the air near the floor, it will rise, and if we cool

some of the air near the ceiling it will drop toward the floor. In

certain types of automobiles formerly on the market, the water

was not forced through the cooling system by a pump but de-

pended on Ihe fact that when cooled in the radiator it tended to

drop, and when heated in the engine it tended to rise. Thus there

was a continual transfer of heat from the engine to the radiator

by convection currents of water, which worked moderately well

for the comparatively low speeds of those days.

In the steam heating plant which we have been using as an

illustration, heat passes from the hot burning fuel to the bottom

of the boiler by convection of hot gases, the water churns about in

the boiler due to convection, changes into steam (which is relatively

light), and in this form rises into the radiators, condenses, and in

this heavier form, returns to the boiler. In the room where the

radiator is located, the air above the radiator continually tends to

rise and thus maintains a convection current in the room. Hot air

heating plants, hot water heaters, and the trade winds serve as

further illustrations of convection. A generalization of the idea of

convection simplifies to a mere moving of a hot body from one

place to another, thus transferring the heat bodily.

.19-8. Radiation. A body which has any temperature above

the absolute zero is continually radiating heat into space, whether

that space consists of an absolute vacuum or whether it is filled with

material substances. For example, the sun is surrounded by an ex-

cellent vacuum, containing only about 16 molecules per cubic inch.

One of these molecules is so small that on the average it travels

nearly 300 years before striking one of its neighbors. Nevertheless

the sun sends out radiant energy in all directions to such an extent

that at the distance of the earth (93,000,000 miles) we continually

receive, on every square yard of surface perpendicular to the sun's

rays, energy at the rate of 1.5 horsepower. These rays travel at
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the rate of 186,000 miles per second in the vacuum between the sun

and the earth's atmosphere, and at somewhat slower rates in other

transparent substances. A small fraction of them is visible to the

eye as light, but all of the radiations will raise the temperature
of any object upon which they may fall. The hotter an object is,

the greater is the rate at which it will emit radiation. We shall

study radiation further under the heading of light, but just now we
are interested chiefly in the fact that it constitutes a third method

of transferring heat. While radiation is not itself a form of heat

(heat involves molecular motion and there are no molecules in a

perfect vacuum), it has its origin in the heat of bodies and is changed

again into heat upon striking other bodies. If one stands in front

of a hot fireplace, he may cut off the sensation of heat on his face

practically instantly by suddenly placing his hand between the

source of heat and his face.

In our illustration of the steam heating plant, the bottom of the

boiler receives heat from the hot coals by radiation as well as by
convection. The radiators also emit energy by radiation as well as

by conduction and convection. Since radiation is not heat at all

(but another form of energy), a generalization of this third method

of heat transfer would be the case where heat is transformed into

some other form of energy (for instance, electrical), transmitted

in this form to some distant place, and then changed back again
into heat.

19-9. Computation of Transfer of Heat by Radiation. The
amount of heat that is changed into radiant energy depends on the

elapsed time, the surface area of the radiating body, the temperature
of the body as well as the temperature of the surroundings, and the

nature of the surface. Some surfaces are almost perfect reflectors;

for example a silver surface will reflect between 97 and 99 per cent

of the infrared radiation falling upon it. On the other hand, cer-

tain substances reflect almost nothing, but absorb nearly all the

radiation falling upon them; these are called black bodies. Good
reflectors are poor radiators, but on the other hand, good absorbers

are good radiators. We shall let B stand for the blackness of a sur-

face. For a perfect absorber, that is, a perfectly black body, B =

1.00; for a perfect reflector, B = 0.00; for all other bodies B lies

between zero and unity. If // is the heat that is converted into

radiant energy, / the time in seconds, A the area of the emitting
surface in square meters, T the Kelvin temperature of the body
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surface, and T8 the Kelvin temperature of the surroundings, then

H = 1.368 X 10-11 tA(T* - T*)B

1Q-10, Illustrative Problem. Assuming that each square yard of the

earth's surface receives 1.5 horsepower from the sun, compute the tem-

perature of the sun's surface. The radius of the sun is 6.97 X 108 meters.

If we imagine a huge hollow sphere of radius 03,000,000 miles, which is

the distance between the sun and the earth, surrounding the sun, with

each square yard receiving 1.5 horsepower, this would give a total of

4Tr(93,000,000)
2
(1,760)* (1.5) 746 watts or 3.77 X 1026 joules per second of

radiant energy leaving the sun, only a small portion of which strikes the

earth. This is 9.01 X 1022 Calories every second. Thus we may substitute

into the equation of the previous section the values H = 9.01 X 1022 Cal.,

t = 1 sec., A = 47r(rsun)
2

,
where rsun = 6.97 X 108 meters; 7\ is so much

less than T that we may neglect it in this problem, and B may be taken as

1.00 since the sun is so nearly a black body. Hence we have

9.01 X 1022 = (1.368) (10~H) (i) (47r) (6.97)2 (iQic) JM (j)

Solving, T4 = 0.1079 X lO^

and T = 5,730K

The value usually given for the temperature of the sun's surface is

slightly under 6,000Kelvin. The temperature of the sun's interior is,

however, much greater than this. The region near the sun's center may
reach as high a figure as 20,000,000 Kelvin. The source of the sun's heat

is doubtless subatomic; that is, the sun's mass is gradually being con-

verted into heat energy.

19-11. An Illustration of Heat Insulation. The problem
of preventing heat transfer also arises frequently; the thermos

bottle provides an interesting illustration of this. The important
feature of the thermos bottle is the double layer of glass of which

it is constructed, together with the vacuum between the two glass

layers. This prevents the conduction of heat because heat can be

conducted only by molecules of material substances, and there are

comparatively few molecules in a vacuum. In other words, a

vacuum is the worst possible conductor of heat. Convection cannot

take place because convection takes place only in fluids and not at

all in a vacuum. But radiation takes place in a vacuum better than

anywhere else. Radiation is prevented in a thermos bottle however

by silvering the sides of the glass that are next to the vacuum and

reducing B of section 19-9 to a value as nearly zero as possible.

This results in reflecting the escaping radiation back in the direc-

tion from which it came. Thus, the only way in which heat can es-

cape easily from a thermos bottle is through the cork.
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19-12. Perfect Reflectors and Perfect Absorbers. There

is no such thing as either a perfect reflector or a perfect absorber,

but since in both cases we can make good approximations, it is

possible to describe their properties. A perfect reflector would not

allow any of its heat energy to escape in the form of radiant energy.
The radiation would be reflected internally, back into the body,

just as perfectly as radiation would be reflected externally. On the

other hand, a perfect absorber would not reflect any radiation, but

would convert it all into heat as fust as it arrived. A perfect ab-

sorber is also the best radiator. Furthermore, when it is considered

that we are enabled to see the objects about us mainly by reflected

light, we realize that a perfect absorber would also be perfectly

invisible (perfectly black) unless it happened to be hot enough
(above 5()()C.) to emit visible radiation of its own. Not only are

the substances that emit radiation best the best absorbers, but the

worst emitters are the best reflectors.

19-13. Thermal Equilibrium. After things have been left

to themselves for a sufficiently long time, a state of equilibrium re-

sults, after which the temperatures no longer change. When this

condition exists, an object is receiving heat by all the methods at

the same rate at which it is giving off heat. If, after equilibrium has

been established, any of the conditions are changed, we say that the

equilibrium has been disturbed. For example, if an object exposed
to the sun's radiation has reached a state of equilibrium and is

then cut off from the sun's rays, its temperature will drop to a new
state of equilibrium where it is again receiving energy as fast as it

is losing it.

For another example, see problem 19-12. Thermal equilibrium
is not a static affair, but involves a lively set of interchanges of

energy, yet in such a way that the rates are completely balanced.

SUMMARY OF CHAPTER 19

Technical Terms Defined

Conduction. A method of transfer of heat by handing the energy along
from molecule to molecule through the body.

Convection. A method of transfer of heat in fluids which takes advan-

tage of the difference in density of hot and cold fluids.

Radiation. Radiation is not heat, but is a form of energy which passes

readily through a vacuum at the characteristic speed of 186,000 miles

per second. Heat may be converted readily into radiation in accordance
with the equation in section 19-9, and radiation may be converted back



HEAT TRANSFER 177

into heat to an extent proportional to the value of B. Thus heat may be
transferred indirectly by means of radiation.

Thermal Equilibrium. A condition in which a body receives heat by all

methods at the same rate that it loses heat.

PROBLEMS

19-1. Discuss how it would be possible so to shape a piece of silver

and a piece of asbestos that heat would be conducted through both at the

same rate with a given temperature difference.

19-2. Why does a piece of cold iron which is at the same temperature
as a piece of woolen cloth feel so much colder than the cloth?

19-3. The water under a layer of ice a foot thick in a pond is at 32F.
How many B.t.u. of heat will pass through a square mile of this ice in an
hour if the temperature of the air above the ice is 0F?

19-4. Assume a house wall to consist of 8 inches of brick in contact with
one inch of wood. Let the outer surface of the brick be at 10F. and the

inner surface of the wood at 70F. Find the heat that will flow through
200 square feet of this house in 24 hours, also find the temperature at the

junction of the brick and wood.

19-5. Can an iceman be considered as being in the business of trans-

ferring heat? If so, of which of the three methods of heat transfer is the

process a generalization?

19-6. Suppose two sheets of metal to be thermally insulated from each
other by a layer of air. Assume three cases % (1) when both surfaces are

horizontal with the hot surface above, (2) when the cold surface is above
the hot surface, both being horizontal, and (3) when both surfaces are

vertical. Discuss the transfer of heat by all three methods in all three cases.

19-7. Draw a diagram of an automobile engine and radiator and show
how, with no water pump, the water will flow while the engine is running.

19-8. If one horsepower is the same as 746 watts, and if 2.54 centimeters

is equal to an inch, find the number of watts per square meter received from
solar radiation.

19-9. Why should a teakettle preferably have a black bottom and a

polished upper surface?

19-10. Detective stories have been based upon the idea of the discovery
of a perfectly black paint enabling the detective to cover himself with it

and move about invisibly. What is the flaw in the idea?

19-11. The inner silvered coating of a thermos bottle has an area of

120 square inches. The hot coffee inside (100C) is losing a Calorie per
hour when the outer shell of the bottle is at 25C. Compute the value of B

m

19-12. A cake of ice and a thermometer stand near each other long
enough for the thermometer to come to a constant reading. Without

moving either, it is possible by means of a large reading lens to do some

focusing that will result in lowering the reading of the thermometer.
Docs "cold" travel like light so that it can be focused on the thermometer?

Explain.
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Expansion

20-1. Linear Expansion of Solids. Since the changes that

substances undergo in their dimensions give us the simplest means
of measuring temperatures, it is important to consider the relation

between expansion and temperature change. We can talk about
the lengths of solids, but not of liquids or gases. The increase in

length of a solid during a rise in temperature is called a linear

expansion. The linear expansion is proportional to three things:

(1) the original length, (2) the temperature rise, and (3) a con-

stant depending on what material is under consideration. This

constant is called the coefficient of linear expansion. When e repre-
sents the elongation, / the original length, ti the lower temperature,
/2 the upper temperature, and therefore /2

~~
ti the temperature rise,

and k the coefficient of linear expansion, the relation just stated

may be expressed by the following equation

Expansion. In the following

expansion, referred to the centi-

20-2. Coefficients of Linear
table are a few coefficients of linear

grade scale.

Aluminum 00000236 Iron 0.0000110

Brass 0.0000186 Lead 0.0000282

Copper 0.0000173 Oak, || grain 0.0000049

Ebonite 0000078 Oak, -i. grain 0.0000544

Fused quartz 0.00000040 Platinum 0.0000088

Glass 0.0000088 Silver 0.0000190

Gold 0.0000139 Steel 0.0000111

Ice 0.0000507 Tin 0.0000217

Invar 0.00000088 Zinc 0.0000285
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These values are approximate; the exact value of a coefficient of

expansion varies with the temperature as well as with the degree of

purity of the specimen. It will be noted that although water ex-

pands when it freezes, the ice once formed contracts if the tem-

perature continues to drop. A study of the table will make it clear

why hot fused quartz may be plunged into cold water without

cracking, whereas the same treatment will completely shatter a

piece of glass. The coefficients of expansion of platinum and glass

are so nearly alike that glass fused around platinum wire will cool

without cracking; this is not true of copper wire. It is only at ordi-

nary temperatures that invar (36 per cent nickel and 64 per cent

iron) has a low coefficient of expansion. Above 1()0C. the value

rapidly approaches that of iron.

20-3. Numerical Illustration of Linear Expansion. As an illustration

of the use of the equation given above, let us find the allowance that should

be made for the expansion of a steel rail thirty feet long if it is to be sub-

jected to fluctuations of temperature between SF. and W5F.
Since the coefficients given in the preceding paragraph hold only for

centigrade degrees, it will be necessary either to multiply these coefficients

by |
so that they will apply to Fahrenheit degrees, or to change the Fahren-

heit temperatures to centigrade readings. We shall do the former because

it is easier. Since the centigrade coefficient of linear expansion of steel is

0.0000111, the Fahrenheit coefficient will be | (0.0000111) or 0.00000617;

this we shall call k. We set / equal to thirty feet, /2 = 95, and fc.
= 5;

therefore fe h = 90. This gives us

e = (30) (90) (0.00000617)

or e = 0.01666 foot. This corresponds to a fifth of an inch.

20-4. Balance Wheel on a Watch. If a straight strip of brass and a

straight strip of steel are welded together to form a single rod, the combi-

nation will be straight at some one temperature. Above this temperature
it will be bent with the brass on the outside, and at reduced temperature it

will be bent with the steel on the outside, because of the di (Terence in the

two coefficients of expansion. If no care were exercised in the construction

of the balance wheel of a watch, it would run slowly on hot days and fast

on cool days for two reasons: (1) the spring is weaker when hot, and (2) an

expanded wheel moves more slowly. By making the balance wheel part
steel and part brass (see sketch at the head of this chapter) with the brass

on the outside, the diameter of the wheel becomes smaller when the tem-

perature rises, and thus compensates for both effects when correctly

adjusted.

20-5. Volume Expansion of Solids and Liquids. The

change in volume v, of a solid or of a liquid, with rise of tempera-

ture, is proportional to three factors: (1) the original volume V,
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(2) the temperature rise (/2 0, anc* (3) a constant K, depending

upon the material under consideration. This constant is called the

coefficient of cubical expansion. The equation therefore becomes

It can be shown that in the case of solids, the value of K is very
close to three times the value of k\ that is, the coefficient of cubical

expansion for a given substance is practically three times the co-

efficient of linear expansion for the same substance. This makes

unnecessary a table of coefficients of cubical expansion of solids.

On the centigrade scale, the coefficient of cubical expansion of mer-

cury is 0.000182, and that of alcohol is 0.00110. Water is a bit

peculiar. A cubic centimeter of water at 0.0C. will shrink to

0.999868 cubic centimeter at 3.98C. At a little over 8C., its

volume is back again to 1.000000 cubic centimeter, and at 15C. it

has a volume of 1.000742 cubic centimeters and is behaving nor-

mally enough so that one can say that its coefficient of cubical

expansion from that temperature on is 0.000372. If it were not for

this peculiarity of water, there would probably be no life on this

planet. Life is supposed to have originated in the sea. But if ice

did not float on water, and if water at the freezing temperature
were not lighter than water slightly above the freezing tempera-

ture, then any body of water that ever freezes at all would freeze

from the bottom up, that is, would freeze solid. And since water

is a poor conductor of heat, the greater part of this ice would re-

main frozen the year around, thus providing no opportunity for

the development of life.

20-6. Numerical Illustration of Volume Expansion. A glass vessel has

a volume of 100 cubic centimeters at 0C.; find the increase in volume
when the temperature is raised to 60C. How much mercury will spill out

at 68C. if the glass vessel is just full of mercury at 0C?
We shall use the formula in section 20-5. V is 100 cubic centimeters,

fe h is 60 centigrade degrees, and K is three times the coefficient of

linear expansion of glass. (3) (0.0000088) = (0.0000264) = K. The in-

crease in volume of the glass vessel v is therefore

v = (100) (60) (0.0000264)

or 0.1584 cubic centimeter. In other words, the space inside of the glass
vessel expands in exactly the same way as a solid piece of glass of the same
volume. We can find the expansion of 100 cubic centimeters of mercury
in a similar way. The equation will be

v = (100) (60) (0.000182)

or t; = 1.092 cubic centimeters. The difference between 1.092 and 0.158,

or 0.934 cubic centimeter, is the quantity of mercury that will overflow.
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The fact that the coefficients of cubical expansion of liquids are greater
than those of solids is the underlying principle of the ordinary thermometer.

20-7. Volume Expansion of Gases. A small change in pres-

sure has little effect on the volume of either a solid or liquid, but in

the case of a gas, pressure is important. It is therefore necessary to

take both temperature and pressure into account in dealing with the

volume expansion of gases. Furthermore, even if the pressure were

held constant, the value of the coefficient of cubical expansion is

different for every initial temperature. At constant temperatures,
the pressure on a gas, multiplied by the volume of the gas, is a con-

stant. (Boyle's law, see section 5-1.) The word pressure as used in

this section is not simply the "gage pressure" as registered by a steam

pressure gage or automobile tire gage; it is 14.7 pounds per square
inch more than the "gage pressure.

" When a tire gage or a steam

gage registers zero pounds per square inch, there is not a complete
lack of pressure (perfect vacuum), but simply the same pressure

inside as outside (atmospheric pressure, which is 14.7 pounds per

square inch). It will now be apparent why "gage pressure" must

be increased by 14.7 pounds per square inch to get the total pressure.

If the temperature changes as well as the pressure, we can express

the situation mathematically by saying that PV/T is constant,

where P, V, and T are respectively the total pressure, the volume,
and the absolute temperature. For the purpose of solving problems,
it is convenient to introduce three more quantities: the new total

pressure P'
y
the new volume V', and the new absolute tempera-

ture jf', of the same mass of gas, so that the equation becomes

PV _ P'V
T

~
T

20-8. Numerical Illustration of the Gas Law. Let us consider an auto-

mobile tire, the volume of which is 1,349 cubic inches when inflated to a

gage pressure of 30.3 pounds per square inch at minus 9C. Assume that

the volume of the tire increases to 1,350 cubic inches when the tempera-
ture rises to 24C. What is the gage pressure under the new conditions?

It will be necessary to use the equation of section 20-7. V = 1,349,

Vf = 1,350. The gage pressure, 30.3 pounds per square inch, must be in-

creased by 14.7 pounds per square inch to give the total pressure required
in the formula. Therefore P = 45.0 pounds per square inch, and P' is the

unknown. The temperatures, as stated, are on the ordinary centigrade scale

and must be changed to the absolute scale before they will fit into the

equation. T = - 9 + 273 = 264, and T = 24 + 273 = 297. The com-

plete equation then becomes

(45.0) (1,349)
__

(PQ (1,350)

264 297
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Solving, we find that P' is 50.6 pounds per square inch total pressure,

which corresponds to a gage pressure of 35.9 pounds per square inch, the

required answer.

SUMMARY OF CHAPTER 20

Technical Terms Defined

Coefficient of Linear Expansion. A quantity characteristic of a particular

substance in a partiuilar condition found by dividing the increase in

length of the specimen by its original length and the change in tem-

penituie which caused the elongation.

Coefficient of Cubical Expansion. The quotient of the increase in volume
of a parlii ular specimen by its original volume, and by the corresponding

change in temperature. In the case of solid materials, the coefficient of

cubical expansion is three times the coefficient of linear expansion.

Gas Law

The product of the total pressure of a gas by its volume divided by its

absolute temperature is a constant for a given mass of gas.

PROBLEMS

20-1. A distance of 1,000 feet (correct value) is measured with a steel

tape correct at 15C. on a day when the temperature is 25C. What is the

reading of the tape?

20-2. A distance is measured with a steel tape which is correct at 15C.
when the temperature is 25C , and the uncorrected value is found to be

2,000 feet. What is the corrected value?

20-3. Imagine two concentric circles drawn upon a sheet of copper and
the material inside the smaller and outside the larger cut away. If the

piece of copper is now heated 50 centigrade degrees, will the inside circle

grow larger or smaller^ If the two diameters are ten inches and twelve

inches at the lower temperature, find the diameters at the higher temperature.

20-4. In section 20-3, what would be the two centigrade temperatures
corresponding to 5F. and 95 F.? Find the expansion of the thirty-foot
steel rail between these temperatures, using the centigrade coefficient of

expansion.
20-5. Referring to the data in section 20-5, describe numerically just

what will happen to exactlv one cubic inih of water as the temperature
rises from zero degrees centigrade.

20-6. How much \vill a steel rail shorten when the temperature drops
50 centigrade degrees, if the original length is 30 feet? If Young's modulus
for steel is 28,000,000 lb./in.

2 and the rail has a cross-sectional area of

12 square inches, find the force necessary to restore the steel rail to its

original length.

20-7. A steel ball one centimeter in diameter is too large to go through
a hole in an aluminum plate at 0C., but will just go through when both
are heated to 80C. Find the diameter of the hole at 0C.
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20-8. A cube of iron is 10 centimeters on an edge at 0C. Find the

change in length of one edge when the temperature rises to 100C. Find
the change in volume. Substitute in the formula in section 20-5, and com-

pute the coefficient of cubical expansion.

20-9. The equation in section 20-1 may be supplied with units as follows:

e feet = (/ feet) (/2 h degrees centigrade) (*/C.) For example, k might
be numerically 0.0000236 per degree centigrade, which is atao sometimes
read 0.0000236 reciprocal degrees centigrade. It will be noticed that the

product of the three units on the right-hand side of the equation is "feet,"
the unit on the left-hand side; that is (feet) (C./C.) = feet. In a similar

way, determine the unit belonging to K in section 20-5.

20-10. A block of ice at 20C. contains a cavity just one cubic centi-

meter in volume. At what temperature will the volume of the cavity be

three-tenths of a per cent larger? What will the volume of the cavity beat 6C?
20-11. If a certain mass of air occupies just one liter at 0C. and at an

absolute pressure of one atmosphere, find the volume at one atmosphere
and 100C.; at 200C. Answers: 1.366 liters; 1.733 liters.

20-12. Using the data of the previous problem, as well as the answers,
find the coefficient of cubical expansion of air when the initial temperature
is 0C.; when the initial temperature is HK)C. Does the result of this

problem check the statement in section 20-7?

20-13. In the illustrative problem in section 20-8, recompute the gage
pressure, assuming that the volume of the tire remains constant.
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Calorimetry

21-1. Measurement of Heat. Temperature represents the aver-

age energy of translatory motion of a single molecule, whereas heat

represents the combined potential, translatory kinetic, and rotatory
kinetic energies of all the molecules in the object under considera-

tion. The quantity of heat in a body corresponding to the total

energy of all its molecules may be considered equal to the product of

three factors: one equal to the total energy of one molecule; a second

equal to the number of molecules in one unit of mass (for example,
the number of molecules per unit mass) ;

and the third factor equal
to the number of units of mass in the body. The absolute tempera-
ture is proportional to the translatory kinetic energy of one mole-

cule, and roughly proportional to the total energy of one molecule.

A physical quantity known as the heat capacity per unit mass is the

number of heat units necessary to raise the temperature of unit

mass one degree, and is roughly proportional to the number of mole-

cules in a unit of mass. This statement of proportionality is known
as Dnlong and Pelifs law. The ratio of the heat capacity per unit

mass of a given substance to the heat capacity per unit mass of

water is called the specific heat of that substance, and by choosing
the unit of heat in such a way that the heat capacity per unit mass of

water shall be unity (1.000), wre can make specific heat numerically

equal to heat capacities per unit mass. This reminds us of the fact

that specific gravity and density are numerically alike in the centi-

meter-gram system (section 5-2). The British thermal unit (B.t.u.)

is the quantity of heat necessary to raise the temperature of one

184
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pound of water one degree Fahrenheit, and the large Calorie (or in

this book, simply Calorie with a capital C) is the quantity of heat

necessary to raise the temperature of one kilogram of water one de-

gree centigrade. Since in this book it is understood that we work

only to slide-rule accuracy, which is sufficient for engineering pur-

poses, it is not necessary to specify which degree the water has been

raised through, although it does make a slight difference. The
small caloric, written with a small c, is equal to 1/1,000 of a Calorie.

3,97 B.t.u. equal 1 Calorie, 3,410 B.t.u. equal one kilowatt-hour,
and 858 Calories equal a kilowatt-hour. This is the Calorie we hear

so much about in dietetics.

When we raise the temperature of a body, then, the increase

of heat is the product of the increase of temperature, the heat ca-

pacity per unit mass (which is numerically equal to the specific

heat), and the mass. If we represent the increase of heat by //, the

heat capacity per unit mass by c, and the mass by m, the relation

may be represented by the following equation
// = (/2

~
/i) (r) ()

21-2. Definition of Specific Heat. It is possible to define

specific heat without the use of the term heat capacity just as

it was possible to define specific gravity without the use of the

term density, but such a definition is somewhat clumsy. The

specific heat of a substance is the ratio of the quantity of heat

necessary to raise the temperature of a given mass of the substance

a certain number of degrees to the quantity of heat necessary to

raise the same mass of water the same number of degrees. From
this definition it is clear why the specific heat of a substance has

no units, and why it has the same value regardless of whether

centigrade degrees or Fahrenheit degrees are used and whether

pounds or kilograms are employed. Since the heat capacity of a

body is the quantity of heat necessary to raise the temperature
of the body one degree, the introduction of the term heat capacity
into the definition of specific heat tends to brevity.

21-3. Numerical Illustrations of Calorimetry. The measurement of

heat is known as colorimetry; two problems will be worked as illustrations.

(1) How many pounds of boiling hot water (212F.) must be added to

610 pounds of water at 40F. in order to get a final mixture at 90F.?
The procedure will be to equate the heat gained by the cold water to the

heat lost by the hot water, thus utilizing the law of conservation of energy.
For this purpose we use the equation in section 21-1. Since the specific

heat of water is unity, the heat gained by the cold water is (90 40) (1)

(610) or 30,500 B.t.u. Similarly the heat lost by the hot water is equal to
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(212 90) (1) (m) where m represents the number of pounds of hot water

necessary. Equating these two quantities of heat and solving for m, we
obtain 250 pounds for our answer. The student will notice that while the

mechanical engineer uses the pound as a unit of weight, the heat engineer
uses it as a unit of mass. (See section 11-9.)

(2) Let us suppose that an experiment is conducted for the purpose of

determining the specific heat of lead (which is 0.03). Let us assume that

0.05 kilogram of lead shot have been heated to a temperature of 100C.
and then dropped into 0.120 kilogram of water at 19C. Let us assume
further that the resulting mixture has a temperature of 20C. The equation

expressing the fact that the heat lost by the lead is gained by the water is

(100 - 20) (r) (0.050) = (20 - 19) (1) (0.120).

Solving, we find that c = 0.120/4 or 0.030.

21-4. States of Matter. Matter is usually said to exist in

three states: solid, liquid, and gaseous. In the solid state, the word

molecule loses its significance; the solid is practically one large mole-

cule in which the atoms are very closely packed and do not on the

average leave their positions, but merely oscillate about a mean

position, the rate of oscillation depending upon the temperature.

In a liquid the word molecule regains its usual meaning, although
the particles arc nearly as close to each other as in a solid, but, due

to a higher rate of motion, they now zigzag about among their

neighbors. This results in the fact that a liquid has no fixed shape
of its own, but merely a fixed volume (at a given temperature).

In the case of a gas, the molecules actually move fast enough to

result in a complete separation from the neighboring molecules.

Thus, a gas has neither a fixed shape nor a fixed volume, but expands
to fill the space available.' When one compresses a gas, he is really

compressing the spaces between the molecules. Molecules attract

each other; this is why the parts of a solid stick together so securely

and why liquids tend to cling together in drops. In gases, however,
the molecules are sufficiently far apart to exert very little attrac-

tion on each other.

21-5. Energy is Required to Separate Molecules. The
attractive forces between molecules are labeled cohesion when the

molecules involved are alike and adhesion when the molecules are

different. Whenever two molecules have been separated, work has

been done and we say that energy has been expended. We recog-

nize the fact that the potential energy of the molecules has been

increased. If the space under the plunger of an air pump is increased,

the motion of the molecules drives them farther apart and utilizes

the extra volume. But the energy necessary to do this is at the ex-
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pense of the kinetic energy of the molecules, and as a result, their

average speed has been decreased. Since the temperature is pro-

portional to the average energy of translatory motion of the mole-

cules, the temperature is lowered by a sudden expansion. On the

other hand, a sudden compression of air, as in a bicycle pump, will

raise its temperature. A very striking case of increase of molecular

potential energy is when a liquid changes into a vapor. We call this

process evaporation and observe that the remaining liquid tends to be

cooled by the process. If, however, we supply the necessary energy
in the form of heat from some external source, it is observed that a

definite quantity of heat is necessary to vaporize a definite mass
of the substance.

21-6. The Triple Point Diagram. The relation between

pressure, temperature, and changes of state are best shown by the

so-called triple point diagram (figure 21-1). Suppose we start with

ATMOSPHERIC

O'C. 100'C INCREASING TEMP. -

Figure 21-1.

a sample of ice (solid) at atmospheric pressure, and at a tempera-
ture below 0C., point A on the diagram. Keeping the pressure con-

stant and raising the temperature, we presently reach point B. The

temperature remains at this value (0C.) until all the ice is melted.

A further rise in temperature brings us to point C, and before the

temperature can rise any further, all the water must vaporize.

Point D therefore represents water vapor. It is possible, however,
to start with a low pressure and temperature (point E) with the

vapor phase. Keeping the temperature constant and increasing

the pressure, the vapor will condense to ice at point F. So far the

pressure has been less than one atmosphere. When the pressure
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reaches one atmosphere, the ice will melt, and at higher pressures

(at 0.C.) will remain liquid water. An inspection of the diagram
will reveal the fact that at pressures less than one atmosphere, the

melting point of ice is above 0C., and the boiling point below 100C.
Ice at low pressures will "sublime," that is, change directly from

solid to vapor with rise of temperature.
The boundary line between the solid and liquid region slopes up-

ward to the left in the case of water and a few other substances.

But in the large majority of cases this line

slopes upward to the right. There is a direct

connection between the slope of this line and

the fact that water expands when it freezes.

When a substance expands as it freezes, an

increase of pressure tends to put it into the

state in which it has the smaller volume,

namely, the liquid state. On the other hand,
a substance like paraffin or aluminum, which

contracts as it freezes, in tending to go into the state with the

smaller volume, solidifies. This means that the freezing point of

water decreases with increase of pressure, while the freezing points

of paraffin and aluminum increase with increase of pressure. Skating
is much easier when the temperature is close to 0C. than when it

is very cold, because in the former instance the skater is actually

skating upon water. This is because the pressure is so high direct-

ly under the skate that the ice finds itself above its freezing point
and liquefies, although it immediately freezes again after the skater

has passed on.

The point // is called the triple point. Imagine a vessel con-

taining ice, liquid water, and water vapor sealed off and main-

tained for an indefinite time at the temperature and pressure

represented by //. The proportions of the three phases will not

change. This does not mean that if we started with a perfect cube

of ice floating upon some water with water vapor in contact with

each, that we could come back after a week and find our ice still in

the form of a perfect cube. There would still be the same volume

of ice present but its shape would be different. This is because in

the equilibrium under consideration, six things are going on at

once, but at balancing rates: ice is both melting and subliming,
water is both evaporating and freezing, and water vapor is con-

densing to both the solid and liquid forms, all simultaneously.
The curve HCK comes to a definite end at the so-called critical
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point. The critical temperature in the case of water is 365C.
;
above

this temperature water exists only in the gaseous state. Oxygen,

nitrogen, and hydrogen, as well as several minor constituents of air,

are gases which at ordinary temperatures are well above their criti-

cal temperatures. Before the relations depicted in the triple point

diagram were understood by scientists, time and money were wasted

in the attempt to liquefy these gases by putting them under pres-

sure. It is now known that their temperatures must be lowered at

least to the critical point before there is any hope of liquefying them.

21-7. Artificial Refrigeration. Artificial refrigeration

depends on the principle that evaporation is a cooling process. A
working substance is compressed or condensed, and the resulting

heat removed. Then the reverse process is allowed to transpire in

the place where the refrigeration is desired, with the result that

heat is withdrawn from the objects in the refrigerator in order to

supply the necessary energy for expansion, or evaporation.

21-8. Heat of Vaporization. When heat is added to a liquid

at its boiling point, the temperature does not rise while the boiling is

taking place, but the newly formed vapor has the same temperature
as the liquid, and during this process, a definite amount of heat is

necessary to vaporize each unit of mass. For example, it requires
540 Calories to vaporize each kilogram of water. Letting L stand

for the heat of vaporization, we can say that when m grams of

liquid change to m grams of vapor, the amount of heat necessary
to produce the change //, is given by the equation

// = (L) (m)

With a different value for L, the same equation can be used when the

units arc B.t.u. and pounds. The equation in section 21-1 holds when
there is a change of temperature, but no change of state, and the

equation just stated above holds when there is a change of state

and no change of temperature.

21-9. Illustrative Problem. By the use of these two equations, we
can solve a problem in which we have both a change of state and a change
of temperature. How much heat is necessary to change 10 kilograms of

water at 90C. into steam at 115C.? The specific heat of steam is 0.48,

considerably different from that of liquid water.

The problem must be separated into three parts: first find the heat

necessary to raise the liquid water to the boiling point, next find the heat

necessary to vaporize the water at 100C., and finally find the heat neces-

sary to raise the steam from 100C. to 115C. This means applying the

equation in section 21-1 twice, and the equation of section 21-8 once.
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Putting in all the numerical values, we have H = (100
-

90) (1) (10) +
(540) (10) + (115

-
100) (0.48) (10), or H equals 5,570 Calories, rounding

the answer off, as is our custom, to the first three significant figures.

21-10. Heat of Fusion. To a less degree, a similar situation

holds during the transition from the solid to the liquid state. It is

necessary to add a given quantity of heat to change a given mass

of solid to the liquid form, and the mixture remains at the tempera-
ture of melting as long as there is both solid and liquid present,

efficient stirring being assumed. It requires 80 Calories to melt one

kilogram of ice; this quantity is called the heat of fusion. Eighty
Calories per kilogram is equivalent to 144 B.t.u. per pound. The

process is reversible; by extracting 80 Calories of heat from each

kilogram of water at 0C., it is possible to freeze water. The equa-
tion in section 21-8 may be used for fusion if L be interpreted as

heat of fusion instead of heat of vaporization.

21-11. Illustrative Problem. Imagine a mixture of 20 kilograms of

ice at 0C. and 100 kilograms of water also at 0C. contained in a copper
tank weighing 25 kilograms. The specific heat of copper is 0.093. How
much steam at 11()C. must be passed into the mixture to bring the tem-

perature up to 2()C.?

The steam will lose a certain quantity of heat, and the ice, water, and

copper vessel will gain this same heat, therefore the procedure will be to

put on one side of an equation the heat lost and on the other side of the

equation the heat gained. The equation thus becomes

(110 - 100) (0.48) (m) + (540) (m) + (100
-

20) (1) (m)
= (80) (20) + (20

-
0) (1) (100 + 20) + (20

-
0) (0.093) (25)

m is therefore equal to (1,600 + 2,400 + 46.5)/(4.8 + 540 + 80), or 6.48

kilograms of steam.

SUMMARY OF CHAPTER 21

Technical Terms Defined

Heat Capacity. The heat capacity of a body is the number of heat units

necessary to raise its temperature one unit. Units are Calorie per de-

gree centigrade or B.t.u. per degree Fahrenheit.

Specific Heat. The ratio of the heat capacity of the given body to the

heat capacity of the same mass of water. It is therefore a pure number.

Numerically it has the same magnitude as the heat capacity per unit

mass, but the latter has units (either B.t.u. per pound per degree Fahren-

heit, or Calories per kilogram per degree centigrade).

Triple Point. The point on a temperature-pressure diagram at which

solid, liquid, and vapor are in equilibrium.

Sublimation. A direct change from the solid state to the vapor state

without passing through the liquid state.
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Critical Temperature. The highest temperature at which it is possible to

liquefy a vapor by increasing the pressure sufficiently.

Critical Pressure. The pressure necessary to liquefy a vapor at the

critical temperature.

Heat Of Vaporization. The number of heat units necessary to vaporize
unit mass of liquid at normal atmospheric pressure. The process is

called boiling.

Heat of Fusion. The number of heat units necessary to melt unit mass
of solid at normal atmospheric pressure.

PROBLEMS

21-L Iodine passes directly from the solid to the vapor state (sublimes)
under ordinary conditions. What could be done to obtain iodine in the

liquid state?

21-2. If figure 21-1 were to be replaced
by the incorrect figure 21-2, in what state

would the substance be inside the small

triangle PQRt How would you proceed to

prove that these three lines would have to

meet at one point II as in figure 21-1?

21-3. Imagine compressing a quantity
of gaseous water at 380 C. until all the mol-
ecules are in contact with each other. What
property of a solid will the mass still fail to

have? What property of a liquid will it fail

to have?

21-4. Why is the boiling point of water

only 86C. on Pikes Peak, Colorado? At
which place will an egg cook sooner by boil-

ing, Pikes Peak or Boston?

SOLID

VAPOR

Figure 21-2.

21-5. How much heat is necessary to change 2 kilograms of ice at
- 10C. to water at 90C., if the specific heat of ice is 0.5?

21-6. What is the resulting temperature when 50 grams of lead shot

(specific heat = 0.03) at 90C. are poured into 1 kilogram of water con-

tained in a brass calorimeter weighing 200 grams, both the water and
container being originally at 20C.? The specific heat of brass is 0.09.

21-7. How many pounds of steam at 212F. let into a swimming pool

containing 10,000 cubic feet of water will be necessary to raise its tempera-
ture from 62 to 70F.? One cubic foot of water weighs 62.4 pounds.

21-8. How many pounds of coal, the heat value of which is 14,400
B.t.u. per pound, will be needed in a boiler the efficiency of which is 100

per cent, to convert 100 pounds of water at 62F. into steam at 212F.?

(No boiler can have an efficiency of 100 per cent.) How many pounds of

coal will it take if the efficiency is 50 per cent?



CHAPTER 22

22-1. Elementary Facts of Magnetism. Every boy knows
that a horseshoe magnet will attract a steel needle. Moreover, if the

needle is first stroked several times in the same direction by one of

the ends of the magnet, it will be found possible to hold the horse-

shoe magnet at a suitable distance from the now magnetized needle

such that repulsion will take place if the relative positions are cor-

rect. If the large magnet is brought too near the needle, the mag-
net is likely to reverse the newly acquired magnetization of the

needle and produce attraction. Or, if the ends of the needle are just

reversed in position, attraction will result. If a knitting needle is

magnetized in the manner described above and suspended by a

single thread, it will set itself in a north-and-south position, thus

constituting a magnetic compass. This provides us with a basis for

naming the two ends. The end that points north will henceforth

be called the north pole, and the other end will be called the south

pole. If two knitting needles are magnetized and similarly suspended
near each other, it will be found that (1) their north poles repel each

other, (2) their south poles repel each other, but (3) a north pole

attracts a south pole. If a magnetized knitting needle is thrown

violently on the floor several times in random directions, it will lose

most of its magnetism; or if it is heated red hot, it will cease to be

a magnet. But if an unmagnctized knitting needle is held in a

north-and-south direction and hammered a number of times, it will

192
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acquire a slight amount of magnetism. Finally, if a magnetized

knitting needle is cut in two, both halves will now be found to be

complete magnets; this process may be continued indefinitely.

22-2. The Underlying Theory. Everything that has been

said in the previous paragraph may be explained if we think of steel

(or iron) as made up of a very large number of little magnets, each

of which is more or less free to change its orientation. An unmag-
netized needle is merely an aggregation of these little magnets, all

in complete disarray, so that the north poles of all the little mag-
nets point in thoroughly haphazard directions; therefore the needle

as a whole exhibits no evidences of magnetism. Stroking the needle

systematically from one end to the other (but not in both direc-

tions) with the north pole of a strong magnet, swings most of the

south poles of ihe little magnets into similar positions, and when

they are thus lined up, the needle as a whole behaves like another

magnet. The elementary magnets swing more freely in soft iron

than they do in hardened steel, and for this reason it is easier to

magnetize soft iron than it is steel, but likewise it is easier for soft

iron to lose its magnetism; in fact, soft iron loses its magnetism al-

most immediately after the magnetizing process stops. Tn the case

of steel, where the elementary magnets swing with more difficulty,

another effect has a chance to show itself; once the little magnets
are lined up, each one tends to be held in position by its neighbors,

since north poles attract south poles. Since the earth is itself

a huge magnet, hammering a knitting needle held in a north-

and-south position (especially with the north end held lower than

the south end) tends to make the elementary magnets behave like

little compasses and line up in parallel directions. This is why the

hulls of steel ships are found to be magnetized after the riveting

process is completed. Heating the magnet to a red heat agitates

the individual molecules violently in a haphazard way, breaks up
the formation of the elementary magnets, and thus produces de-

magnetization. Similarly, throwing the needle on the floor tends to

demagnetize it by disarranging the little magnets. Furthermore

we can now see why a magnet cut in two yields two complete mag-

nets, because, if the cutting were continued until we had the indi-

vidual elementary magnets all separated, each would still have its

own north and south poles.

22-3. The Earth as a Magnet. We have seen that the

north pole of a magnet is so called because it points nearly north

when the magnet is mounted so that it is free to swing, that is,
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when functioning as a compass. But we have also seen that north

poles repel each other and that north and south poles attract.

Therefore the polarity of the geographically northern end of the

earth must be magnetically south! In the United States, the north

pole of a perfectly balanced magnet, in this case called a dipping

needle, tends to pull down as well as to point north. This action is

called dipping, and is due to the fact that we are nearer to the north

pole than we are to the south pole. If we were to stand directly over

a magnetic pole of the earth, the magnet would orient itself verti-

cally. The earth is a magnet because of its rotation relative to an

excess of positive ions in the upper atmosphere. The magnetic

poles do not exactly coincide with the geographic poles because of

the irregular distribution of iron in the earth together with the fact

that the earth is constantly being bombarded with electrons from

the solar sunspots in an irregular fashion. We shall see later that

motion of electric charges (which includes electrons and positive

ions) produces magnetic effects.

22-4. Magnetic Lines of Force. It becomes rather easier

to discuss both electricity and magnetism if we introduce the idea

of "magnetic lines of force." We visualize these lines as coming out

of the north end of a magnet and going in at the south end. Their

direction in space at any point is that which a small compass needle

would take at the point in question. Thus the north end of a small

compass needle would point toward the south end of a large magnet.
If a sheet of paper, or a glass plate, or some other thin nonmagnetic
substance is placed upon a strong magnet, and iron filings sprinkled

upon it, each filing will constitute a tiny compass and will set itself

parallel to a line of force at that point. Thus we can determine

experimentally the direction of the lines of force. A line of force is

considered to be a closed curve, passing through the magnet as well

as through the region outside of the magnet. By definition, the

lines pass from the south end of the magnet to the north end inside

of the magnet, and from the north end to the south end outside of the

magnet. (See figure 22-1). In terms of lines of force, a north pole is

a region where lines of force emerge from a piece of iron, and a south

pole is a region where lines of force enter a piece of iron. Lines of

force prefer to pass through iron rather than air. Lines of force

tend to shorten, and two lines of force adjacent to each other repel

each other. The works of a watch may be considerably shielded

from magnetic effects by enclosing them in an iron case. Then any
lines of force in the region of the watch will pass through the iron
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of the case rather than through the air within the case, and very
little magnetic effect will be experienced inside the case. A mag-
netic field is a region containing

magnetic lines of force.

22-5. Quantitative As-

pects of Magnetism. Two
magnetic poles repel or attract

each other more strongly when
near each other than when far

apart. If we double the dis-

tance between them, the effect

becomes only one fourth as

great, and if we treble the dis-

tance, the effect drops to one

ninth. If we let the strength of Figure 22-1.

the two poles be represented by
pi and p2 respectively, the distance between them by d, and the

force of repulsion by F, the relation* is

_pip2 ,F ~l^ km

We shall assume in this equation that d is in meters, F in newtons,
and pi and p? in the corresponding unit of the so-called practical

system of electrical units which ties in with the meter-kilogram-
second system. This unit of pole has no name, so we shall refer to

it as a "pole unit." The value of km is 10,000,000 newton-meters2

per pole unit squared. We shall find it more convenient to express

this number as 107
. ju represents a pure number which is called the

permeability of the medium. Its value for a vacuum is exactly unity.

For air it is slightly more, 1.00026, and for a few materials con-

siderably more, but in most cases we may safely ignore it as a factor.

Since a given magnet pole is always attached to another of equal

strength and opposite polarity, the poles which are not involved in

the equation just mentioned must be considered to be a great dis-

tance away. That is, the magnets concerned are very long.

It is often convenient to compute the force which would exist

at a given point on a north pole of unit strength. In order to

visualize this, we must imagine the unit magnet again to be very

long so that the south pole which inevitably accompanies a north

* This relation was discovered by the French physicist, Charles A. Coulomb, 1736-1806,
and is often labeled with his name.
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pole is far enough away to have a negligible effect on the situation.

The force per unit north pole at the given point is called the field

intensity at that point, and is generally represented by the letter //.

Knowing the value of the field intensity, it is merely necessary to

multiply it by the strength of an actual pole placed at the given

point to find the force on the actual pole. That is

F = pH

where F is in ncwtons, p in "pole units," and // in a unit which

is one thousandth of a certain unit in the c.g.s. system called the

oersted] we may therefore speak of // as measured in millioersteds.

A uniform field of H millioersteds is considered to consist of lines

of force just far enough apart so that H of them would pass through
a square meter placed at right angles to the field.

A convenient method of measuring the field intensity at a given

point is to set up a small compass needle there, displace it slightly

from its equilibrium position, and let it oscillate. Then perform the

same experiment with the same compass needle at a place where

the magnetic field is known. If the two fields are represented re-

spectively by Hi and 7/2 and the two frequencies of oscillation

respectively by/i and/2, the relation between the four quantities
will be

The student will be able to convince himself that this equation
is correct by recalling the relations for a compound pendulum in a

gravitational field (section 15-11) where the period T was shown
to be inversely proportional to the square root of the gravitational

field, . Therefore the frequency is directly proportional to the

square root of the gravitational field, or in our present problem, to

the square root of the magnetic field.*

22-6. Illustrative Problems. (1) Given two long magnets one with

poles of 5 muTounits and the other of 6 microunits. (Micro means one

millionth in scientific work). If the north pole of the first magnet is placed
within 0.1 meter of the north pole of the second magnet in air (with the

two south poles as far apart as possible), find the repulsive force exerted

by one north pole on the other.

Solution: Let pi
= 0.000005, p* = 0.000006, jfem = 10,000,000, and

d = 0.1. Substituting these values into the equation F = kmpip2/d2 gives

* The period 2T, of the oscillating magnet in a horizontal magnetic field //, is given by
T = 2 TT Vl/Hlp

where 7 is the moment of inertia of the magnet, / its length, and p its pole strength.
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-, (10,000,000) (0.000005) (0.000006) nn ,r =
. .

a
= O.UJ newton

A newton is a little less than a quarter of a pound (4.45 newtons = 1 pound)
so it is seen that this force is not very large, although the magnets of this

problem represent fairly strong "permanent magnets." Electromagnets
can be made much stronger.

In handling large or small numbers the so-called index notation is

convenient. Thus in this problem it would have been easier to state the

equation

p = (10*) OOy ( . 3(1(H) - 0.03 newton

(2) (a) Find the field at the vertex of an equilateral triangle 0.2 meter on
a side if at the other two vertices we
have respectively the north and south

poles of a cobalt steel magnet of pole

strength 4 micropole units, (b) How
many lines per square meter would we
have in a uniform magnetic field of this

strength? (c) What force will act on a

magnet pole of 0.000001 pole unit if

placed at the point p?

Solution: (a) In order to find the

field at the point p of figure 22-2, we
first imagine a unit north pole at the

point p, then compute the force F\ due

to the repulsion arising from N, then find the force

of S, and lastly get the resultant //.

Figure 22-2.

1*2 due to the attraction

Fl _ =
If00o mfflioemted.

Since exactly the same numerical values enter into the computation of

7*2, this is also 1,000 millioersteds. And since the parallelogram contains

two equal forces 120 degrees apart, the resultant // is also 1,000 milli-

oersteds, parallel to the magnet.

(b) The number of lines per square meter will be numerically equal to

the field strength in millioersteds. Therefore in this case the field corre-

sponds to 1,000 lines per square meter.

(c) If a pole of 10~6 units is placed at the point p, the force acting on

it will be given by the relation /" = pll. In this case it will be

F = (10-6) (iQ3) = 10-3 newton

This is a small force. A newton is about 3.6 ounces, therefore this force

is about 1/278 of an ounce.

(3) A certain compass needle takes 50 seconds to make one complete
oscillation in the earth's magnetic field, the horizontal component of which
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is 166 millioersteds. When placed near the poles of a certain electromag-
net it oscillates five times per second. Find the field at this point.

Solution: Let/i be 0.02 vibration per second, the reciprocal of a period
of 50 seconds per vibration. Let /2

= 5 vib./sec. Let HI be 166 milli-

oersteds. 7/2 may be found by substituting in the equation B.2/ Hi =

/2
2
//l

2

166
~~

(0.02)2

Solving, we obtain 7/2 = 10,380,000 millioersteds. Fields more than

ten times this figure may be obtained by well designed electromagnets.

22-7. Demagnetization. A piece of soft iron will become

temporarily magnetized very easily when brought near a strong

magnet, but it will immediately lose its magnetism, that is, become

demagnetized, when it is taken away again. Soft iron is therefore

used for the cores of electromagnets. On the other hand, it is more

difficult to magnetize a piece of hardened steel, but once mag-
netized it tends to retain its magnetism and becomes a permanent

magnet. By shaping the permanent magnet like a horseshoe, its

two poles are brought near to each other, thus resulting in a more

concentrated magnetic field. It is sometimes desired to demag-
netize a piece of magnetized steel. Heating is a possible method,
for heat represents a random molecular motion and therefore tends

to disarrange the little magnets that constitute a permanent magnet.

Raising to a red heat will spoil any permanent magnet. The hair-

spring of a watch cannot be demagnetized by this method, how-

ever. The magnetization in this case can be removed by placing

the watch in the magnetic field produced by an alternating electric

current and then slowly removing it. All electric currents are sur-

rounded by magnetic fields, and an alternating current is surrounded

by an alternating field that reverses its direction many times a

second. Thus the elementary magnets in the hairspring attempt to

wheel about every time that the field reverses its direction. As the

watch is gradually removed from the field, a decreasing number of

the little magnets within the hairspring is able to obey the alter-

nating field until finally the little magnets are completely dis-

arranged. The same effect may be produced by means of a perma-
nent magnetic field and a rotating watch. In this case the watch is

merely suspended from a twisted string in a strong horizontal mag-
netic field and gradually removed as the string untwists.

22-8. Additional Evidence of the Identification of

Magnetism with Arrangement of Elementary Magnets.
Anyone who has ever been near a large electric transformer operating
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on a 60-cycle alternating current has noticed the so-called "60-cycle
hum." In fact, if one listens carefully to a small transformer or even

an electromagnet with alternating current flowing through it, the

same 60-cycle tone will be heard. This is due to the fact that the

little magnets in the iron of the transformer are obliged to turn

over with great regularity every time the current reverses direction.

A regular vibration in the region which the ear can detect consti-

tutes a musical tone. The 60-cycle tone is a fairly low pitch; on

the other hand, a 500-cycle transformer emits a rather high-pitched

squeal.

22-9. Magnetism Not Confined to Iron. Every substance

is affected to some slight degree by a magnetic field, but it requires

rather strong magnetic fields to demonstrate it except in the case

of iron. For this reason it is usual to consider iron the only magnetic

material, in spite of the fact that magnetism is actually a universal

property of matter. Some substances make a feeble attempt to get

out of a strong magnetic field; they are called diamagnetic. Other

substances which make a feeble effort to get into a strong magnetic
field are called paramagnetic. Iron, which is in a class almost by
itself, is called ferromagnetic.

SUMMARY OF CHAPTER 22

Technical Terms Defined

Magnetism. A property possessed feebly by all substances but to a pro-
nounced extent by iron; it involves a rearrangement of the constituent

particles of the material and results in attractions and repulsions be-

tween the magnetized objects. A magnetized piece of iron or steel is

called a magnet.

Magnetic Pole. One of the ends of a magnet or other portion where the

forces are greatest.

Compass. A magnet in the shape of a bar or needle mounted so that it is

free to rotate in a horizontal plane. The end that points north is labeled

the north pole and the other end the south pole.

Unit Pole. Two poles, just alike, in vacuo, which will repel each other with

a force of 10,000,000 newtons when separated by a distance of one meter,
are said to be unit poles in the practical system of electrical units.

Magnetic Field Strength. The strength of a magnetic field at a given

point is the magnetic force in newtons which will be exerted on a unit

north pole placed at that point.

Magnetic Lines of Force. A magnetic field is described by "lines of force."

These are thought of as emerging from north poles and re-entering the

magnets at the south poles, forming closed curves. A small compass
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needle or iron filing will set itself parallel to a line of force. It is con-

sidered that there is the same number of lines per square meter as the

numerical value of the field strength in newtons per unit pole.

Diamagnetic Substances. Substances which tend feebly to remove them-

selves from a magnetic field. Usually the best they can do is to set

themselves crosswise in a field.

Paramagnetic Substances. Substances that feebly set themselves parallel

to a magnetic field.

Laws of Magnetism

Like poles repel each other; unlike poles attract.

A given magnet always possesses the same strengths of north and
south polarity.

It is impossible to separate a north pole from a south pole.

Coulomb's Law. A magnetic pole will exert a force on another pole which

is proportional to the product of the two pole strengths and inversely

proportional to the square of the distance between them.

PROBLEMS AND EXERCISES

22-1. Why is it impossible to have a north pole unaccompanied by a
south pole?

22-2. Assume two bars, one of soft iron and the other of steel, the

latter magnetized; state how you could distinguish the magnetized bar
from the other, with no equipment other than the two bars and your
two hands.

22-3. Give an opinion as to whether a compass floated on the ocean
will start a journey toward the nearer of the earth's magnetic poles.

22-4. Discuss the permanency of a bar magnet made by filling a soda-
fountain straw with iron filings, and plugging the ends.

22-5. An imitation of Mohammed's coffin, which was said to float in

mid-air, is sometimes accomplished by means of two strong bar magnets.
Make specifications for a piece of lecture demonstration apparatus which
will illustrate this.

22-6. Specify the best arrangement of two bar magnets when stored side

by side in the same box.

22-7. Find the attraction between a north and south pole of strengths 1

and 2 micropole units respectively when placed 0.05 meter apart in air.

22-8. Two equal poles 0.04 meter apart in air repel each other with
a force of 0.00016 newton. Find the pole strength of each.

22-9. Two unlike poles attract each other with a force of 0.004 new-
ton at a distance of 0.06 meter. If the south pole has a strength of

0.6 micropole unit, what is the strength of the north pole?
22-10. Two like poles, each with a strength of 10~6 unit, repel each

other with a force of 0.004 newton. What is the distance between the

poles?
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22-11. Find the field strength at a point distant 0.0$ meter from a pole
of strength one micropole unit. How are the lines of force spaced at this

point?

22-12. Calculate the strength of the magnetic field at a point 0.08

meter from the north pole of a bar magnet and 0.1 meter from the south

pole. The distance between the poles of the magnet is 0.06 meter, and
each pole has a strength of 96 X 10~8 unit.

22-13. Find how many complete oscillations a compass needle would
make per minute at a place where the horizontal field strength is 180

millioersteds, if its period is 6 seconds where the field is 185 lines per

square meter.

22-14. Two like magnets are placed in line with their north poles 0.1

meter apart and their south poles half a meter apart in air. (1) What is

the repulsion between these magnets if each pole is 2 microunits? (2) What
is the magnetic field strength midway between the north poles of these

magnets?



CHAPTER 23

Static Electricity

23-1. How Atoms Are Put Together. In order to understand

the basic facts of electricity, it is helpful to get a mental picture of

the internal structure of atoms. They are no longer considered to

be hard, spherical, uncuttable entities, but we speak quite confi-

dently of three of their constituents (and speculate on the possibility

of a fourth). Atoms are constructed out of three kinds of particles

called electrons, protons, and neutrons. Protons and neutrons have

about the same mass (1.671 X 10~28
kilogram) while electrons are

lighter (1/1,834 as much, or 9.11 X 10~31
kilogram). Protons repel

one another (except when very close together, when they attract

one another). Electrons also repel each other, but protons and elec-

trons attract each other at all distances. Neutrons exert no forces

on one another or on other particles except at very close range,
when the force is one of attraction. 6.24 X 10 18 electrons constitute

a coulomb of negative electricity, likewise the same number of pro-
tons constitute one coulomb of positive electricity.

In the structure of the typical atom, the protons and neutrons

are concentrated in a comparatively small region called the nucleus

at the center of the atom. In most atoms, there are at least as many
neutrons as protons and usually more; the total number of both to-

gether is called the atomic weight.
When in the normal state, an atom contains a series of concen-

tric shells which are named (starting from the inner one) respec-

tively, the K-shell, L-shell, and so on. These shells are not to be

202
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thought of as made of anything; they are rather the average lo-

cation of groups of electrons, two in the K-shell, 8 in the L-shell,

18 in the M-shell, and so on, until there are as many electrons

present as there are protons in the nucleus. It will be noticed that

the numbers 2, 8, 18, 32, and so on, are twice the perfect squares,

1, 4, 9, 16, and so on. Since the recent discovery of neptunium and

plutonium, there are 94 different kinds of known atoms (with some

doubt about two of them) and probably numbers 95 and 96 will

be added to the list before long. These make a continuous series all

the way from hydrogen with one proton in the nucleus and one

electron in the K-shell, up to plutonium with 94 protons and 145

neutrons in the nucleus and 94 electrons distributed among several

shells.

23-2. Conductors and Insulators. The nearly one hundred

varieties of atoms may be divided into two classes, called by the

electrician conductors and insulators, and by the chemist metals

and nonmetals. Metallic atoms all have one, two, three, or in some

cases four, electrons held loosely enough so that it is perfectly pos-
sible for the atom temporarily to lose them entirely. Since the

nucleus is positive, and since under normal conditions there are

just enough electrons to balance exactly this positive charge, it

will be clear that if one or more electrons are lost from the atom,
what is left will have an excess positive charge. The technical term

for this positive aggregation is positive ion. A nonmctallic atom,
on the contrary, is so constituted that it has an attraction for more
electrons than are necessary to balance the positive charge of the

nucleus. An aggregation of this sort, containing an excess of elec-

trons, is called a negative ion. In an insulator, the nonmetallic

atoms are predominant; no free electrons to speak of are present.

But in a group of metallic atoms, there will always be plenty of free

electrons roaming about between the atoms. Given a metallic wire,

it is possible to force in extra electrons at one end and remove elec-

trons from the other end, while, in between, the electrons drift

along from atom to atom. Such a wire is said to conduct electricity.

23-3. Static Electricity. The tendency of a substance to gain

or lose electrons varies from substance to substance. Therefore if

any two dissimilar materials be placed in very close contact, elec-

trons will tend to desert one substance and cling to the other. The
former material thus becomes positively charged and the latter

negatively charged. Examples are: leather belts running on steel

pulleys, fountain pens in contact with cloth, rubber tires in contact
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with the road, combs pulled through hair, shoes scuffed on rugs,

and so on. If one strokes a cat on an exceptionally dry day and

then touches the cat's nose, a small spark will jump. When a glass

rod is rubbed with a silk cloth, the glass loses electrons and the silk

gains them, that is, the glass becomes positively charged and the

silk negatively. It is customary to refer to this phenomenon as

frictional electricity or static electricity] it is however the contact

rather than the friction which produces the effect. If two very

light objects, such as small balls made of pith covered with metallic

foil, and suspended by means of nonconducting threads, are now

given, one some of the charge that is on the glass rod, and the other

some of the charge on the silk cloth, it will be found that the two

pith balls attract each other. If, however, both balls are charged
from the same object, say the silk cloth, they will repel each other.

Furthermore, if an insulator be given a negative charge by the

method just mentioned and then rotated rapidly in a clockwise

direction as viewed from above, the upper side will be found to be

(during the rotation) a feeble north magnetic pole, and the under side

a south pole of equal strength. If on the other hand the insulator

is given a positive charge, it will have to be whirled in a counter-

clockwise direction as seen from above to make the upper side a

north pole.

23-4. Coulomb's Electrostatic Law. The electrician's unit

of electric charge is called the coulomb. The number of electrons

necessary to constitute a coulomb is very large; a microcoulomb is

one millionth of a coulomb and is still large as electrostatic charges

go. The equation giving the relationship between the electrical

charges #1 and
</ 2 ,

the distance d, between them and the force F,

that each exerts on the other is

In this case F is in newtons, d in meters, q\ and q% in coulombs, and
k e is 9 X 10" newton-meters2

per coulomb 2
. If everything takes

place in a vacuum e is exactly unity. If the medium is air, e is

slightly more, 1.00059. e is known as the dielectric constant for the

medium between the charges. Typical values are 16.5 for diamond,
9.9 for heavy flint glass, 5.8 for mica, 2.1 for both paraffin and
kerosene.

23-5. Illustrative Problem. Two pith balls weighing 90 milligrams
each are suspended in air by nonconducting silk threads, each 0.13 meter

long (the weight of which may be neglected) from a single point, and given
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equal positive charges. As a result the centers of the pith balls stand 0.10

meter apart. See figure 23-1. Find the charge on each, in coulombs and
in microcoulombs.

Solution: Since both pith balls

are in equilibrium, the tension in

one of the threads, the electro-

static repulsion, and the pull of

gravity represent three forces on

one pith ball which are all in

equilibrium. If we resolve the

tension into a vertical and a hori-

zontal component (figure 23-2),

we discover that the diagram con-

tains 5, 12, 13 triangles. The ver-

tical component balances mg. In

this case m = 0.000090 kilogram
and g 9.80 newtons/kilogram,

making mg = 0.000882 newton.

Since this represents the 12 side

of the 5, 12, 13 triangle, and the

force F, which we need, balances

the 5 side, F is 5/12 of 0.000882

newton or 0.000368 newton. We
shall substitute then into the Figure 23-1.

equation of section 23-4 this value

together with ke
= 9 X 109 newton-meters2/coulomb2

,
d = 0.10 meter,

and e = 1.001. This gives

0.000368 =
9 X 109

(1.001) (0.10)
2

'

-ro$

Figure 23-2.

Solving for q, we obtain q
= 0.0000000202

coulomb, or better 2.02 X 10~8 coulomb.

This can also be expressed as 0.0202

microcoulomb or 2.02 X 10~2 micro-

coulomb.

23-6. Condensers; Capacitance.
A very useful piece of electrical ap-

paratus consists of two sheets of con-

ducting material, such as tin foil,

separated by a nonconductor, such as

glass or mica or paraffined paper.
This is called a condenser. If one of

the conductors is given an electric

charge and the other conductor is con-

nected to the ground, say by joining

it by means of a copper wire to a
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water pipe, the grounded side of the condenser will be found to have a

charge of opposite sign but equal in magnitude to the original

charge. The two opposite charges hold each other in place by their

electrostatic attractions. The charged condenser may be "dis-

charged" by making a metallic connection between the two plates.

A physical quantity known as the capacitance of the condenser,

represented by the letter C, is proportional to the overlapping area

of the two conductors A, in square meters, inversely proportional

to the thickness d, in meters, of the nonconductor (which is often

called a dielectric) also proportional to the dielectric constant e, of

the nonconductor. The equation expressing these relations is

c -
'

&e is as before 9 X 109 newton-meters2

/coulomb
2

. We should ex-

pect to express the capacitance C, in coulomb 2

per joule, indeed

this would be an entirely correct unit, but it is customary instead

to express the capacitance in farads. Like the coulomb, this is a

very large unit, so that we find the microfarad, which is a millionth

of a farad, much more convenient for ordinary use.

23-7. Voltage. The ratio of the positive charge on one side of

a condenser to the capacitance of the condenser is called the voltage

across the condenser. Sometimes we use the expression potential

difference instead of voltage. We should expect the unit of this ratio

to be either coulombs per farad or joules per coulomb. While both

of these are correct, still another unit is used, the volt. The best

definition of the volt is the energy in joules necessary to transfer a

coulomb of electricity from one side of the condenser to the other.

At the same time, it is convenient to think of voltage as the degree
of abnormality of distribution of electrons. This results in a ten-

dency to force the electrons back into the atoms where they nor-

mally belong. Thus if we desired a large flow of electrons in a wire

the thing to do would be to create a large potential difference or

voltage across the ends of the wire.

23-8. Illustrative Problems. (1) Find the capacitance of a condenser
which consists of a cylindrical glass jar 11.2 centimeters in diameter, thick-

ness of glass 3.5 millimeters, with 700 square centimeters of its inner area

coated with tin foil opposite an equal area of tin foil on the outer surface.

Consider the dielectric constant of the glass to be 8.

Solution: It is necessary to substitute into the equation of section 23-6

the values =
8, A = 0.0700 meter2

,
kf
= 9 X 109 newton-meters2/cou-

lomb2
, and d = 0.0035 meter. Thus
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(8) (0.0700)

47r9(10
9
) (0.0035)

or C = 1.415 X 10~9 farad. It is more customary to express this as

1.415 X 10~3 microfarad or even 1,415 micromicrofarad. The piece of

apparatus described in this problem is called a Leyden jar and has more
historical than practical interest. Much greater capacitances than this

may be obtained by using alternate layers of tin foil and waxed paper
with every other piece of tin foil connected electrically. The whole can

then be rolled up into a compact cylinder.

(2) If the two metallic surfaces of the Leyden jar of the previous

problem are connected respectively to the positive and negative terminals

of an electrostatic "influence machine" which furnishes a potential dif-

ference of 50,000 volts, find the quantity of electricity that can be removed
from one surface of the Leyden jar and placed on the other.

Solution: Substitute into the equation

implied in the first sentence of section 23-7 the values V = 50,000 volts

and C = 1.415 X 10~9 farad, and solve for q. This gives q - 7.08 X 10~5

microcoulomb.

(3) How much energy goes into the electric spark when this Leyden
jar is discharged?

Solution: A volt may also be called a joule per coulomb. While the

Leyden jar is being discharged, we may think of its voltage as dropping
from 50,000 volts to zero with an average value of 25,000 volts, or 25,000

joules per coulomb. This multiplied by the 7.08 X 10~5
coulombs, which

is to be transferred from one metallic surface of the Leyden jar to the other,

gives 1.77 joules of energy. This energy is not annihilated but appears in

the form of heat, light, and sound in the electric spark, 1.77 joules is

equivalent to 1.31 foot-pounds, which represents the mechanical work
done by the man that turned the crank of the "influence machine" in the

first place.

23-9. Comparison of Magnetic and Electrostatic Effects.

Magnetism Electrostatics

Occurs to a noticeable extent only Is noticeable in all substances, cs-

in iron and its alloys. pecially in nonconductors.

Magnetism in a piece of steel is pro- An electric charge in a nonconduc-
duced by lining up the elementary tor is produced by giving it extra

magnets of which the sample is made, electrons, or taking some away.

Magnet poles always occur in pairs Unlike electric charges may be sep-
which cannot be separated. arated to any extent.

k pip2 ktqiQ2
r = -

5 r = -=

\ir* er*

Magnet poles are designated by the Electric charges are designated by
terms north and south. the terms negative and positive.

A magnetic pole at rest has no effect on an electric charge at rest.
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SUMMARY OF CHAPTER 23

Technical Terms Defined

Electron. A minute particle having a mass of 9.11 X 10"~81 kilogram and

a negative electric charge of 1.63 X 10~19 coulomb. It represents the

smallest quantity of negative electricity discovered; all other charges
are integral multiples of this.

Proton. A particle having a mass of 1.67 X 10~28 kilogram and a posi-

tive charge of 1.63 X 10~19 coulomb. It is one of the constituents of

the nucleus of an atom and can be removed from an atom only by very
extreme measures.

Neutron. A particle with approximately the same mass as the proton and
with no electrical charge. It is also one of the constituents of atomic

nuclei.

Atom. The chemical unit of matter. So far, nearly 100 kinds of atoms

are known. An atom represents an aggregation of protons in its nucleus,

an equal number of electrons in concentric shells surrounding the

nucleus, also, with one exception, neutrons in the nucleus.

Conductor. A metallic substance in which there are free electrons moving
between the atoms and belonging to these atoms. This motion of

electrons in a conductor is called an electric current.

Insulator. A nonmetallic substance containing practically no free elec-

trons. A nonconductor of electricity.

Dielectric Constant. A property of a nonconductor. The greater the

dielectric constant of an insulator, the smaller is the electrostatic force

that exists between two charges embedded in the insulator.

Condenser. A piece of apparatus consisting essentially of two sheets of

conducting material with a sheet of insulating material between.

Voltage. The energy in joules necessary to remove one coulomb of elec-

tricity from one side of a condenser and place it on the other side. One

joule per coulomb is called one volt,

Capacitance. The ratio between the quantity of electricity on one side

of a charged condenser and the voltage across the condenser. Its unit

is the farad. One microfarad is a millionth of a farad. The capacitance
of a condenser is directly proportional to the dielectric constant of the

insulating sheet, directly proportional to the overlapping area of the

conducting sheet, and inversely proportional to the thickness of the

insulator.

Coulomb's Law. The force with which one electrostatic charge q\, repels

or attracts another charge #2, varies directly with the charges, inversely

with the square of their separation, and inversely with the dielectric

constant of the intervening medium. Like charges repel and unlike

charges attract.
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PROBLEMS

23-L Given a mounted compass needle not enclosed in a case. What
would be the effect of bringing near the north pole of the needle each end
of (1) a magnet, (2) a bar of unmagnetized soft iron, (3) a stick of wood,
and (4) an electrified glass rod? In what respects are effects (1) and (2)

similar?

23-2. Two pith balls in air are charged with three microcoulombs each
and their centers are two centimeters apart. What force does each exert

on the other?

23-3. A positive charge of 10 microcoulombs and a negative charge of

5 microcoulombs are separated 0.2 meter by kerosene of dielectric con-

stant 3. What force docs each charge exert on the other?

23-4. Find the capacitance (in both farads and microfarads) of a con-

denser consisting of two sheets of lead foil each 20 cm. 2 area and one sheet

of paraffined paper 0.05 mm. thick, of dielectric constant 2.

23-5. If a condenser of one farad capacitance were to be constructed of

lead foil and paraffined paper 0.05 mm. thick of dielectric constant 2, find

the necessary area of the "plates." From the result of this problem, state

the reason for the unpopularity of the farad as a unit.

23-6. If a condenser of 2 microfarads capacitance is charged to a po-
tential difference of 500 volts, find the charge on each side.

23-7. What energy was expended in charging the condenser of the

previous problem? Express this in joules, foot-pounds, and British ther-

mal units. What ultimately becomes of this energy?



CHAPTER 24

Electricity In Motion; Heating Effect

24-1. Electric Currents. A negatively charged object is one
with more electrons than normal, while a positively charged object
has less electrons than normal. There is no easy method of moving
protons about; they remain fixed quite permanently in the nuclei

of the atoms present, but the electrons are free to move. If, then,

by some means it is possible to arrange two regions, one of which
maintains more electrons than enough to balance the protons in

the nuclei of the atoms, and the other less electrons than protons,
and if these two regions are connected by means of a conducting
wire which contains a great many loose electrons, but an equal
number of positively charged atoms (so that the wire as a whole
is electrically neutral), the result will be that extra electrons will

flow into the wire at one end and electrons will flow out at the

other end at an equal rate, and the wire as a whole will still remain
neutral. This migration of electrons through the wire is known as

an electron current. (Electricians are coming to use the idea of elec-

tron current more and more in preference to the old "conventional
current" which was said to flow in the other direction and which
dates back to the time when no one knew just what was going on.)
In this book, from here on, the word current will be understood to

mean electron current, or current of negative charges. It will flow from
an excess of electrons to a deficiency of electrons, which is equiva-
lent to saying that it will flow from a low potential to a high po-
tential. If it were possible to count the electrons that went by a

point of the wire in one second we could visualize one ampere as a

210



24-2] ELECTRICITY IN MOTION; HEATING EFFECT 211

flow of 6.24 X 1018 electrons per second, which is one coulomb per
second.

24-2. Drift Speed of the Electrons Versus Signal Speed.
The actual progress of an electron along a wire is in a very zigzag
fashion. It is constantly colliding with the other particles of the

wire, so that a current of one ampere flowing in a copper wire a

square millimeter in cross section would correspond to an actual

drift speed of about a foot per hour. How is it then that we can

carry on a telephone conversation with someone 3,000 miles away
and notice no delay whatever in the return of the other person's

answer? The answer is that the drift of the electrons and the signal

speed are two utterly unrelated quantities. As an illustration of

how this can be, consider a pipe full of water with a tightly fitting

plunger inserted at each end. If now one plunger is moved forward

slowly, say at the rate of one inclvper second, all the water in the

pipe will also move at that rate, and so will the plunger at the other

end. The drift speed is therefore one inch per second. The question
now arises as to the length of time intervening between the motion

of the first plunger and that of the second plunger. If both the

water and the pipe were incompressible, the process would be in-

stantaneous, although no drop of water actually travels faster than

one inch per second. Thus a series of signals can be transmitted

with this mechanism much more rapidly than the actual motion of

the particles because all the particles start moving at the same time.

The strong repulsions that the free electrons in a wire exert upon each

other make them behave like a nearly incompressible fluid in a pipe,

so that the signal speed is practically the speed of light (186,000

miles per second) in spite of the fact that the drift speed is so small.

24-3. Electromotive Force. Since the drift of electrons

through a wire is so analogous to the flow of water in a pipe, it will

be helpful to use the illustration further. Consider a "centrifugal"

water pump with the outlet connected to the inlet by means of a

long pipe. (See figure 24-1.) The pipe will be somewhat more ana-

logous to an electric wire if we imagine it filled with pebbles to

correspond to the atoms and ions all through the cross section of

the wire. If both the pump and the pipe are full of water to begin

with, to correspond to the free electrons which are always present
in a conductor, it will be clear that there will be no circulation of

water in the system until the pump begins to act. Let us however

imagine the pipe to be equipped with a valve which is closed at the

beginning of our discussion
;
this corresponds to a break in the elec-
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trie circuit, that is, a nonconductor. If the centrifugal pump is

started while the valve is still closed, the only result from the ac-

tion of the pump will be to produce a difference in pressure on the

two sides of the closed valve, which may be determined by reading

Figure 24-1.

the two gages. Pressure in mechanics is equivalent to energy per
unit volume (see section 5-1); voltage in electricity is equivalent to

energy per unit charge; thus if we consider volume of water in

this analogy to correspond to quantity of electricity, this pressure

difference on the two sides of the closed valve corresponds to a po-
tential difference in the electrical case. There exist devices like bat-

tery cells (often called voltaic cells) which are capable of main-

taining a difference in potential across a break in an electric circuit,

and we call this voltage the electromotive force of the voltaic cell.

Now if we open the valve and allow the water to flow, the pres-

sure gages will change their readings so that the difference will be

less. It will still require a certain amount of energy to force unit

volume of water all the way around the circuit once, through the

pebbles, but this energy can no longer be determined by reading

the gages; the gages will give only that part of the energy utilized

between the high pressure and the low pressure gages, and not that

used up in the pump. This process is equivalent to closing the

switch in figure 24-2. The energy in joules necessary to make one

coulomb of electrons go around the circuit once is again the elec-

tromotive force of the cell in volts, but while it could be read direct-

ly from the voltmeter when the switch was open as in the diagram,

the electromotive force must be computed and not measured when
the switch is closed.

The volume of water which passes any given cross section of

the pipe per second, that is, the current, is directly proportional to
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the pump action and inversely proportional to the resistance offered

by the pebbles. Likewise the electron current in amperes is directly

proportional to the electromotive force of the cell and inversely

proportional to the resistance offered by the electric circuit.

VOLTMCTEQ

Figure 24-2.

24-4. Ohm's Law. The proportionality between the electro-

motive force in an electric circuit and the current that flows is known
as Ohm's law and the proportionality constant is technically known
as the resistance of the circuit. Thus, if E stands for the electro-

motive force of the circuit, / for the current flowing through the

circuit, and R for the resistance of the circuit, Ohm's law is expressed

by the equation
E = IR

This is equivalent to defining the resistance of a circuit as the ratio

between the electromotive force in volts and the current in amperes.
But instead of expressing the resistance in volts per ampere we ex-

press it in ohms.

We also speak of the voltage F, across a portion of a circuit;

this is equal to the current flowing through this part of the circuit

multiplied by the resistance of the same portion of the circuit

V = IR

24-5. Distinction Between Electromotive Force and

Voltage. In order to make electrons flow around an electric cir-

cuit,' energy must be supplied somewhere in the circuit. This usual-

ly happens in a comparatively small portion of the circuit; the source

may be chemical energy, heat energy, or mechanical energy, but

however it is done, the result is a more or less sudden jump in

electrical pressure called an electromotive force. There will then be

a gradual drop in electrical pressure al) through the rest of the cir-

cuit so that the sudden rise (the electromotive force) is equal to the

sum of the gradual drops. These gradual drops are sometimes called
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IR drops, sometimes potential drops, and sometimes merely the

"voltage across such and such a resistance."

Electromotive forces may be negative as well as positive. An ex-

ample of this is a battery put into a circuit backward, as is done in

charging a storage battery. In this case there is a sudden drop in

electrical pressure and electrical energy is converted into chemical

or some other form of energy.

24-6. Illustrative Problems. (1) Assume that in figure 24-2 there is just

enough No. 20 nichrome wire connected to the terminals of the dry cell

to have a resistance of one ohm (1.70 feet), and that the switch is closed.

Let the resistance of the cell itself be 0.05 ohm and assume that the am-
meter reads IA3 amperes. What is the electromotive force of the cell?

Solution: In a simple circuit of this type (with no branching) the

current is the same throughout, namely, 1.43 amperes. The total resistance

of the circuit is the sum of 0.05 ohm in the cell and 1.00 ohm in the rest

of the circuit, or 1.05 ohms. This assumes that the resistance of the am-
meter is negligibly small and the resistance of the voltmeter so large that

practically no current goes through it. Substituting into the equation
E IR we obtain

E = (1.43) (1.05)

or E = 1.50 volts.

(2) Find the reading of the voltmeter in part (1).

Solution: This may be done by two methods. First we may use the

equation V = IR for the part of the circuit consisting of the nichrome

wire, switch, and ammeter. In this case, R = 1 ohm, / = 1.43 amperes,
and therefore V = 1.43 volts. The same result may be obtained by arguing
that at the place where the voltmeter is connected we have almost the full

effect of the electromotive force of 1.50 volts. There is only the IR drop
through the battery to be subtracted. This is (1.43) (0.05), or 0.0715 volt.

1.50 volts minus 0.07 volt is 1.43 volts as before.

(3) What will the voltmeter read if the switch is opened?
Solution: When the switch is opened the current drops to zero, there

are no IR drops, and therefore the voltmeter reads the full electromotive

force of 1.50 volts.

24-7, Resistivity. We can predict the resistance of a piece of

wire if we know its length, cross sectional area, and the material of

which it is made. If R =
resistance, A cross sectional area, and /

length of the wire the relation is

The proportionality constant r is called resistivity. This equation
states that a long wire offers more resistance to the flow of electrons

than a short wire, a fat wire offers less resistance than a thin wire,
and some materials are better conductors than others. As in the



24-8] ELECTRICITY IN MOTION; HEATING EFFECT 215

case of heat conduction, silver and copper are the best conductors

of electricity. If / is in meters and A in square meters, a few values

of rare: aluminum, 2.83 X 1CT8
; carbon, 3,500 X 10~ 8

; copper,
1.692 X 1(T8

;
German silver, 33 X 10~8

; gold, 2.44 X 10~8
; iron,

10X10-8
; lead, 22 X 10~8

; mercury, 95.8 X 10~8
; nichrome,

100 X 10-8
; silver, 1.65 X 10~8

.

These values hold at 20C. At higher temperatures, the re-

sistance of metals increases according to the same type of law as

linear expansions. That is, the increase of resistance is proportional
to the original resistance times the temperature coefficient times the

increase in temperature. The temperature coefficients of non-

metals are negative. A few centigrade temperature coefficients are:

aluminum, 0.0039; carbon, 0.0005; copper, 0.0039; German sil-

ver, 0.0004; gold, 0.0034; iron, 0.0050; lead, 0.0043; mercury,

0.00089; nichrome, 0.0004; silver, 0.0038.

24-8. Illustrative Problems. (1) How long must a piece of nichrome
wire be in order to have one ohm resistance if its diameter is 0.03196 inch?

Solution: Here it is necessary to convert the resistivity into English
units or convert the diameter into metric units. We shall do the latter.

Since there are 39.37 inches in a meter, 0.03196 inch is 0.03196/39.37 or

0.000812 meter (
= 0.812 millimeter). Thus we have r = 100 X 10~8 or

= 10~6 from the previous section, R = 1 ohm, and A =
7r(0.000406)

2 =
5.18 X 10~7w2

. Substituting these three values into the equation of sec-

tion 24-7 gives

1 ^
5.18 X 10-7

Thus, I = 0.518 meter. Since there are 3.28 feet in a meter, / may also be

expressed as (0.518) (3.28), or 1.699 feet.

(2) Find the resistance of this piece of wire at 100C., also at 0C., also

find its temperature coefficient at 0C.
Solution: The increase in resistance from 20C., at which the resist-

ance is 1.000 ohm, up to 100C. is the product of 1 ohm by 0.0004 per C.

by 80. This product is 0.032 ohm. Thus the resistance at 100C. is 1.032

ohms.

The decrease in resistance from 20C. down to 0C. is similarly the

product of 1 ohm by 0.0004/C. by 20, or 0.008 ohm. Thus the resistance

at 0C. is 0.992 ohm.
If we wish a new temperature coefficient referred to 0C., we must

solve the equation

1.032 - 0.992 = (0.992) (*) (100)

This gives x = 0.040/99.2 = 0.000403 per degree centigrade.

24-9. Heat Produced by an Electric Current. If we re-

member that V volts may also be written V joules per coulomb, also
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that an ampere is the same as a coulomb per second, and thus that

a coulomb is the product of the current in amperes by the number

of seconds it flows, that is

q= It

then it will be clear that the product of V joules per coulomb and

// coulombs will be the energy in joules

involved in causing a current / amperes to

flow / seconds through a potential drop of

V volts.

joules
= Vlt

If there are no negative electromotive

forces present, this energy will be converted into heat in the circuit.

In order to avoid any qualifying "ifs," an equivalent expression may
be obtained eliminating the voltage V. Since V = IR, we have

heat in joules = I2Rt

That is, the current in amperes, squared, times the resistance in

ohms times the time in seconds will always give the heat developed
in this resistance in joules.

24-10. Illustrative Problem. Find the heat developed by a 20-ohm,
120-volt electric stove in half an hour. Express the result in joules, Calories,

B.t.u., and KWH.
Solution: Using Ohm's law, V = IR, when V is 120 volts and R is

20 ohms, we conclude that the current is 6 amperes. Substituting 7=6
amperes, R 20 ohms, and / = 1,800 seconds into the last equation of

section 24-9 gives

heat in joules = (36) (20) (1,800)

or 1,296,000 joules of heat are developed in the half-hour.

Since there are 4,190 joules in a Calorie, this is equivalent to 3,090
Calories.

Multiplying 3,090 Calories by 3.97 B.t.u./Cal. gives 12,270 British

thermal units.

Dividing 1,296,000 joules by 3,600,000 joules/KWH gives 0.360 KWH.
24-11. Hot Wire Ammeters. Since an electric current al-

ways produces heat and since heating a wire changes its length,

ammeters can be constructed on this principle to measure currents.

It is only necessary to put the ammeter into the circuit so that the

same current flows through it that flows through the rest of the

circuit. The wire whose length is to change (on account of the

heating effect of the current through it) is kept taut by a spring;

the motion of this spring is communicated to an indicating pointer
which moves over a calibrated scale.
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24-12. Electric Light. If sufficient heat is produced in a

wire, it will become red-hot, or even white-hot, and emit consider-

able light. The fraction of the energy thus converted into light is,

however, small and dependent on the temperature. Incandescent

lamps with tungsten filaments surrounded by an atmosphere of

nitrogen emit about 1 1 per cent of the energy
consumed in the form of light. These fila-

ments reach temperatures of 2,SOOC.
The electric arc between carbon terminals

in air reaches temperatures of 3,000C. at the

negative terminal, and 3,500C. at the posi-

tive terminal. These temperatures may be

increased by enclosing the arc in an atmos-

phere of carbon dioxide and increasing the

pressure. In thisway temperatures of 6,000C.
have been reached at about 30 atmospheres pressure.

24-13. Electric Power. Since power is the rate of doing

work, the quotient of energy by time gives power. Since the energy
in joules is Vlt we have

power in watts = VI

That is, current in amperes times voltage in volts gives power in

watts. A 600-watt flatiron on 120 volts, for example, carries 5

amperes.

By using V = IR we may eliminate V and obtain

power in watts = PR

For example, in the problem of section 24-10, the power was (6)
2
(20)

= 720 watts. This is equivalent to 0.720 kilowatt. We could have

obtained the last answer by multiplying 0.720 kilowatt by 0.5 hour

and obtaining 0.360 KWIL
24-14. Thermoelectricity. If two wires of different materials

are connected at both ends, no current tends to flow so long as the

two ends are at the same temperature. But if the two junctions are

maintained at different temperatures, a small electromotive force is

developed resulting in a feeble current. This current is too small for

any commercial application other than for the purpose of measuring

temperatures. The arrangement used in this may be called a thermo-

couple. For example, if one junction is in contact with an automo-

bile engine and the other is at the temperature of the instrument

board, a current will flow sufficient to give an indication on a

galvanometer which may be calibrated to read the engine tempera-
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ture in degrees Fahrenheit. It is also of theoretical interest that

one of the three principal ways of creating an electromotive force is

thermally.

24-15. Some Practical Aspects of an Electric Current.

In practical work, three things are necessary for the satisfactory

operation of an electrical device (assuming of

course that the device itself isproperly designed) :

(1) the proper connection of a proper source of

electromotive force, (2) a complete circuit con-

sisting of conductors, and (3) the precaution of

preventing the current from flowing in undesired

directions, accomplished by the use of insu-

lation and insulators. As an illustration, con-

sider any simple electrical apparatus, such as

an electric bell or electric flatiron. The electromotive force for the

bell may be supplied by a couple of dry cells or some other source of

low voltage. If the cells are used, the first item consists in making
sure that the carbon (center terminal) of one cell is connected to the

zinc (outside terminal) of the other cell. The second item includes a

check of the wiring, the condition of the bell itself, and the switch.

The wiring must be arranged so that when the switch is closed, there

is a complete circuit from the zinc of one cell to the carbon of the

next, then from the zinc of the next cell through the bell and the

switch, back to the carbon of the first cell.

SUMMARY OF CHAPTER 24

Technical Terms Defined

Electric Current. Migration of free electrons through the body of a con-

ductor, measured in amperes, or coulombs per second.

Electromotive Force. The electromotive force of a battery or other source

of electrical power is the energy in joules that it is capable of expending
while pushing a coulomb of electricity completely around a closed cir-

cuit. This is a characteristic of the battery and not of the circuit and will

be the same, whatever the nature of the circuit. It is measured in volts.

Potential Difference. The energy in joules expended in forcing a coulomb
of electricity through a portion of a circuit. It is also measured in volts.

Resistance. The ratio between the potential difference in volts across

a portion of an electric circuit and the current in amperes. It is charac-

teristic of the conductor and is measured in ohms.

Resistivity. The resistance of a specimen of material of unit length and
unit cross section. The resistivity is a characteristic of the material at a

definite temperature. The change in resistivity of a conductor with
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temperature is directly proportional to its original resistance, the change
in temperature, and its temperature coefficient.

Thermoelectricity. A small electromotive force may be produced by
joining two or more dissimilar metals to form a closed circuit and main-

taining different temperatures at the junctions.

Laws

Ohm's Law. This law states that the current flowing in a circuit is direct-

ly proportional to the total electromotive force present and inversely

proportional to its resistance. Ohm's law may likewise be applied to a

portion of a circuit. The voltage across any portion of a circuit is pro-

portional to the current flowing and to the resistance of this portion
of the circuit.

Joule's Law. The heat developed in a portion of an electrical circuit

is proportional to its resistance, to the time, and to the square of the

current.

The power applied to a circuit is proportional to both the voltage and
the current.

PROBLEMS

24-1. If E = 100 volts and 7 = 20 amperes, find the resistance, JR.

24-2. What current will flow in an electric lamp of 220 ohms resistance

on a 1 10-volt circuit?

24-3. Find the drop in voltage in a five-mile trolley wire carrying a

current of 20 amperes, if the resistance is 0.5 ohm per mile. If the power
station supplies 550 volts, what is available for the trolley?

24-4. Figure out a wiring diagram which will make it possible to turn

on or off an electric lamp either at the head or foot of a flight of stairs,

regardless of how the other switch stands.

24-5. Repeat problem 24-4 with three independent switches for the one

lamp.
24-6. If there are 8.5 X 1019 free electrons in a cubic millimeter of a

copper wire, find the drift speed of electrons in a wire of one square milli-

meter cross section while carrying a current of ten amperes.
24-7. The resistance of a piece of wire varies directly as its length and

inversely as the square of its diameter. If a copper wire 1 foot long and
0.001 inch in diameter (sometimes called a mil-foot) has a resistance of

10.4 ohms, find the resistance of 100 feet of copper wire 0.0403 inch in

diameter (#18 A.W.G.)
24-8. The change in resistance of a copper wire with temperature

follows the same type of law as change of length, that is

change of resistance = R t (0.00426)

where R is the resistance at 0C. and / is the centigrade temperature.
A piece of copper wire has the resistance of 15 ohms at 0C. What is its

resistance at 30C.?
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24-9. A 32-volt lamp has a resistance of 10 ohms and is to be connected
with a 110-volt line. Compute the resistance which must be used in series

with the lamp.
24-10. Three pieces of apparatus of 20, 24, and 36 ohms respectively

are connected in series across a 115-volt line. Compute (1) the current

in, and (2) the voltage across, each piece.

24-11. Two rods are welded together by driving a current of 500 am-
peres through the contact in which most of the resistance is concentrated.

If the resistance of the contact is 0.02 ohm, find the number of Calories

developed in 8 seconds.

24-12. How much current is intended to flow through a lamp marked
60 watts, 110 volts? What is its resistance when in use? How many
Calories are developed in it per second? Would its resistance be more or

less when cold?

24-13. A certain fuse wire has a resistance of 0.003 ohm, a mass of

0.005 gram, a specific heat of 0.04, and a temperature of 20C. It melts at

140C. If a current of 10 amperes is sent through it, how long will it take
for the fuse to "blow"?



CHAPTER 25

Voltaic and Electrolytic Cells;

Simple Circuits

25-1 . Voltaic Cells. A strip of metallic zinc is made up of neutral

zinc atoms together with a considerable number of zinc ions. The
latter have each lost two electrons from the outermost shell; these

detached electrons are also present in the strip. The zinc atoms are

not soluble in water to any appreciable extent; on the other hand

the positively charged ions are quite readily soluble in water. The
result is that when a strip of zinc is dipped into water, it is found

that the water takes on a positive charge and the metallic zinc

an equal negative charge. If at the same time a rod of carbon or

copper or some metal that is much less active than zinc is also placed

in the same solution with the strip of zinc, the zinc will be negatively,

and the other metal positively, charged. This means that the carbon

will now contain too few electrons, because electrons have been at-

tracted into the solution by the positive zinc ions, and the zinc

contains an excess of electrons. Pure water is a very poor conduc-

tor of electricity, therefore before any very practical use can be made
of this arrangement, the conductivity of the water must be improved

by dissolving in the water some cheap electrolyte, such as sal-

ammoniac.

If the negative zinc and positive carbon terminals are now con-

nected with a wire or other electrical apparatus possessing more or

less resistance, so as to form a closed circuit, there will be a flow of

221
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electrons from the zinc through the wire to the carbon. As these

electrons arrive, they are also attracted through the carbon rod in-

to the solution, where they neutralize positive zinc ions and positive

hydrogen ions. Both the neutral zinc atoms and hydrogen atoms

thus formed become insoluble and tend to "plate out" on the carbon.

When this happens, the cell is said to be polarized. The polarization

may be prevented by adding an oxidizing agent like manganese di-

oxide to the solution. When positively charged ions are neutralized

by the electrons which arrive by way of the carbon, more zinc ions

go into solution from the metallic zinc. Thus the cycle of events in

the circuit is complete. The combination of two dissimilar metals in

a conducting solution is called a voltaic cell after its discoverer,

Alessandro Volta (1745-1827).

25-2. Dry Cells. In order to utilize the voltaic cell efficiently,

it is convenient to use a zinc container as the negative electrode,

put a carbon rod down through the center as positive electrode; and

fill in the intervening space with a paste containing ammonium

chloride, the depolarizing agent, and manganese dioxide. This paste
is sealed in with pitch, a nonconductor which

prevents evaporation of the paste. There is

not much to get out of order in this cell; it

lasts until enough zinc has gone into solution

to eat a hole in the container, after which

the paste evaporates and the "dry cell,"

which heretofore has been dry only on the

outside,- becomes dry inside as well, and
ceases to function.

25-3. Storage Batteries. Severalvol-

taic cells may be used together, with the

positive terminal of one connected directly
to the negative terminal of the next and so

on; the combination is called a battery. A
type commonly used in automobiles, air-

planes, trains, boats, and so on, is called a

storage battery because its action may be

reversed by forcing a current through it

backward. This process is known as charging', after this, the battery
is ready to be used all over again.

The commonest type of storage battery is the lead accumulator.
The negative electrode is metallic lead, put into a "spongy" con-
dition to increase its surface. The positive electrode consists of lead

Figure 25-1.
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dioxide, and the solution is dilute sulphuric acid of specific gravity
about 1.250. When the battery delivers current to a circuit, the

electrons leave the lead electrode and pass around through the

external circuit, arriving by the lead dioxide (positive electrode) at

the solution. Here the electrons encounter positive hydrogen ions,

with which they join up, forming hydrogen atoms. The latter tend

to pick off oxygen atoms from molecules of lead dioxide, forming
lead monoxide and water. The lead monoxide combines with sul-

phuric acid to form insoluble lead sulphate. Likewise at the nega-
tive electrodes, as fast as double-charged lead ions go into solution,

they combine with sulphate ions to form insoluble lead sulphate.
That is, the action of the battery is to make both electrodes alike

and to dilute the solution with water. If this tendency goes any-
where near to completion, the battery is said to be run down, or

discharged.

But the utility of the lead storage battery lies in the fact that

when an electric current is put through the battery backward, all

these changes take place in the reverse direction; the acid solution

becomes stronger, and the lead sulphate disappears from both elec-

trodes, leaving them spongy lead and lead dioxide respectively, that

is, if the battery has not been left discharged long enough to be-

come "sulphated."
25-4. Chemical Effect of the Electric Current. The last

paragraph of the preceding section is but one illustration of a

phenomenon known as electrolysis. Electroplating is another illus-

tration. Electroplating always entails the use of solutions. In any

inorganic solution, the substance dissolved is usually present in the

form of positive or negative ions. Since the solution as a whole is

neutral, there are just as many total negative charges present due

to the negative ions as there are positive charges from the positive

ions. Electroplating is done by passing an electric current through
a solution of some compound of the metal involved. For example,
silver plating may be accomplished by passing the current through
a solution of silver nitrate which contains, in addition to water mole-

cules, positive silver ions and negative nitrate ions. The negative
nitrate ions, while the current is passing, move through the solution

at a slow rate in the direction of the electron current. The positive

silver ions move still more slowly through the solution in the other

direction. In fact, it may be said that the combined motion of these

two kinds of ions constitutes the whole electric current in the solution.

The student should contrast the situation in a wire, where the
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current is solely due to the motion of electrons, with the situation

in a solution, where the current is wholly due to the combined

motions of positive and negative ions. When the positive silver

ions land at the electrode where the electron current is entering the

solution, the silver ions become silver atoms by absorbing one

electron each and "plate out" on the electrode. The negative
electrode upon which the silver plates out is called the cathode, and

the positive electrode is called the anode. The number of grams of

an element plated out by the current is proportional to the number
of coulombs allowed to pass through the circuit, because the num-
ber of atoms plated out is proportional to the number of electrons

entering the solution. One coulomb will plate out 0.00111800

gram of silver. The fact is not only taken as the legal definition

of the coulomb in this country, but it is also the international

coulomb, and the legal definition of the ampere is then the same as

that given in section 24-1. It has been remarked facetiously that

the number just mentioned is easy to remember since it consists

of one decimal point, two zeros, three ones, and four twos (to say

nothing of the extra zeros at both ends).

Electrolysis and electroplating find a very extensive use in in-

dustry, not only in extracting metals from their compounds that

occur in nature, but in the purification of unrefined grades of metals.

For example, ordinary copper has too great a resistance for use in the

electrical industries, but by using it as the anode of an electrolytic

cell, very pure "electrolytic copper" plates out at the cathode.

This has a much lower resistance.

25-5. Hill Diagram. In order to visualize the potentials

around an electric circuit, it is helpful to make a graph in which

potentials are plotted as ordinates against position in the circuit as

-gVWW?

Figure 25-2.

abscissas. For this purpose consider the circuit shown in figure 25-2.

This consists of six storage cells in series with an ammeter, M\ a
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three-celled storage battery which is being charged ;
and a resistance.

The circuit is slightly absurd because it is not customary to charge
one storage battery at the expense of another.

Points in the Circuit

Figure 25-3.

Starting with A, the point at which the electrons have their

highest concentration and which electricians speak of as a low

potential ,
we proceed along the copper wire, AB, to the point #,

which has almost as low a potential since the copper has so small a

resistance; thus, in figures 25-3 and 25-4, the line AB is practically

horizontal. BC in figure 25-2 is a resistance. There is a drop in

potential from C to B equal to the product of the current /, by the

resistance R, that is, an IR drop, or a rise from B to C as shown in

figures 25-3 and 25-4. Again the wire CD of figure 25-2 has so little

resistance that CD is nearly horizontal in figures 25-3 and 25-4.

D is the negative end of the three-celled storage battery that is

being charged and E is its positive terminal. In this battery, we

Figure 25-4.

meet three electromotive forces and three resistances. We may think

of the seats of the electromotive forces as the surfaces separating
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the electrodes from the solutions; here there is an abrupt rise in

potential of about two volts in going the slight distance necessary

to get from one side of this surface to the other. Therefore the

electromotive forces are represented on figures 25-3 and 25-4 as

vertical lines, while the 77? drops are again slant lines, and the

potential at E is higher than at D for these two reasons. It is neces-

sary to buck the back electromotive force of the three cells as well

as to push the electrons through the three resistances. The lines

EF and GH are again horizontal, and the line FG not far from hori-

zontal, since the ammeter M has a very low resistance. H is the

point in the circuit of highest potential; it is where the electrons

are scarcest. In going from // to A we find six electromotive forces

and six resistances. This time the effect of the electromotive forces

is to concentrate the electrons more and more from H to A, so

whereas the IR drops are still in the same direction the electromotive

forces are in the other direction. We refer to them as direct electro-

motive forces. The voltage or potential drop between H and A is

the sum of the electromotive forces of the six cells minus the IR

drops of the cells. We are now back at A, where we started. It

will readily be seen that, counting the back electromotive forces

as negative, the sum of the electromotive forces in the entire cir-

cuit equals the sum of the IR drops. Or, since it is the same current

everywhere in the circuit

_ algebraic sum of e.m.f.

sum of the resistances

The student will find it convenient to think of electromotive forces

as vertical lines on a diagram like figure 25-4, and voltages or po-

tential drops as slant lines on such a diagram.

25-6. Illustrative Problem. Assume the following numerical values in

the preceding section: resistance of BC, 2.9 ohms; resistance of each cell,

0.01 ohm; resistance of the wires, zero; resistance of the ammeter, 0.01 ohm;
electromotive force of each cell, 2 volts. Find the current /, also the

potential drops AB, BC, CD, DE, EF, FG, GH, and HA.

Solving the equation at the end of the preceding section we have

6(2)
-

3(2)

2.9 + 3(0.01) + 0.01 + 6(0.01)

or / = 2 amperes. We know at the outset that the potential drops across

AB, CD, EF, and GH, which we shall represent respectively as VAB , VCDJ

VEF, and VGH, are all zero because these resistances are all taken as zero.

VCB is purely an IR drop, therefore V B = (2) (2.9) or 5.8 volts, and VBC
is 5.8 volts. That is, VBC is a potential rise and therefore a negative
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i vWMr
Figure 25-5.

-v/WVV-

potential drop. VDE is another potential rise made up of 3(2
V
) or 6 volts

of e.m.f. together with 3(2) (0.01) or 0.06 volt of potential rises through
the three resistances. Thus VDE = 6 0.06 or 6.06 volts. V?G =

2(0.01) or - 0.02 volt. VUA is made up of six e.m.f.'s of 2 volts each,

or 12 volts together with 6 potential rises due to resistance. 6(2)(0.01) =
0.12 volt. VUA = 12 0.12 = 11.88 volts. As a check, it will be seen

that the drop from H to A, 11.88 volts, is equal to the sum of the rises from

B to C, 5.8 volts; from D to
,
6.06 volts; and from F to G, 0.02 volt.

25-7. Series and Parallel Circuits. All the circuits thus far

discussed have been series cir-

cuits. That is, the electrons

have found it necessary to flow

through a series of conductors,

one after the other. In such a

circuit, the current is the same

everywhere ;
the total resistance

is the sum of the separate resist-

ances and the voltages add algebraically. Figure 25-5 is also an

example of a simple series circuit, where again the total resistance is

the sum of R' and R" . If, on the other hand, the arrangement is

such that the current can divide, part flowing through one resistance

and part through another, and then come together again (see figure

25-6), the resistances are said to be in parallel. Here the combination

resistance is no longer the sum
of the two; in fact it is less than

either one alone. It is now the

total conductance that is the

sum of the individual conduct-

ances. Conductance may be de-

fined as the reciprocal of the

resistance. When the resistance

is large, the conductance is

small, and vice versa. It is
Figure 25-6.

quite customary to assign the letterG to conductance and to measure

it in mhos. (Mho is ohm spelled backward.) Then
1

c* =
R

and the relation G = Gf + G" becomes

1- JL+.LR R'^ R"

for resistances in parallel. Furthermore

/ = /' + /"
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but the potential drop from A to B is the same whether we think

of the upper resistance R'
9
the lower one R", or both together.

25-8. Cells in Parallel and in Series. If several cells are

placed in parallel, the electromotive force of the combination is the

same as the electromotive force of a single cell. This is because the

electromotive force of a cell does not depend upon its size, but

simply upon the chemical substances of which it is composed.

Putting several cells together in parallel is equivalent to manufac-

turing one large cell from the same materials. One would never put
two different kinds of cells in parallel because the one with the

greater electromotive force would force a current backward through
the weaker cell which would result in "charging" the weaker at the

expense of the stronger. But, as we have seen, when several cells

are arranged in series with each other, the total electromotive force

is the sum of the individual electromotive forces.

25-9. Illustrative Problem. Given the circuit shown in figure 25-7 in

which trie battery consists of eight cells arranged with two rows in parallel

Figure 25-7.

and four cells in scries in each row, each cell with an e.m.f. of 1.5 volts and
negligible internal resistance. The rest of the circuit consists of a resistance

BC of 10 ohms, in scries with a group of three resistances which are in

parallel with each other; RI = 12 ohms, #2 = 6 ohms, and ^3 = 4 ohms.
The problem is to find the current /, in the main circuit, also the currents
in each branch of the circuit.

The current / may be found by dividing the electromotive force of

the battery, which is the electromotive force of 4 cells (not 8) or 6 volts,

by the total resistance of the circuit. In order to find this resistance we
must solve the equation

i.i+i + i
R 12

^
6
T

4

for R. This gives R = 2 ohms. The total resistance of the circuit then is

10 + 2 or 12 ohms and the total current is
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or 0.5 ampere. The current through each branch of the battery is half of

this, or 0.25 ampere. The IR drop, VED, across the parallel circuit is

(0.5) (2) or 1 volt. Since the same voltage holds for all three resistances

between E and D, we have

7l =
12

/2 =
6

h =
4

by using the relation / = V/R, This gives /i = 0.0833 amp., 72 = 0.1667

amp., and /s = 0.250 amp.

SUMMARY OF CHAPTER 25

Technical Terms Defined

Polarization. The tendency to reverse the electromotive force of a cell

by the plating out of hydrogen on the carbon terminal within the cell

during the action of the cell.

Electrode. A solid plate or rod which conducts a current into or out of

a solution.

Electrolysis. The formation at the electrodes of an electrolytic cell of

substances derived from the solution.

Anode. The positive electrode. It collects negative iomi during elec-

t rolysis.

Cathode. The negative electrode. It collects positive ions during elec-

trolysis. The electrons may be said to enter a solution by the cathode

and leave it by the anode.

Legal Coulomb. That quantity of electricity which when passed through
the cathode into a silver solution results in plating out 0.00111800

grams of silver.

Legal Ampere. That steady current which when passed through the

cathode into a silver solution plates out 0.00111800 grams of silver

per second.

Series Circuit. A circuit where all the electrons have to pass through all

the various elements, one after the other.

Parallel Circuit. A circuit in which the current divides, and part flows

through each branch.

Conductance. The reciprocal of resistance. It is measured in mhos.

PROBLEMS

25-1. One coulomb will plate out 0.000329 gram of copper from a

solution of copper sulphate. With a current of 20 amperes, how long a
time is needed to purily by electrolysis a pound of copper?

25-2. Silver was plated on a platinum electrode from a silver nitrate

solution. The current was controlled so that an ammeter in the circuit

read precisely 0.500 ampere for a time of 90.0 minutes. By carefully

weighing the platinum electrode before and after this period, it was found
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that 3.025 grams of silver had been deposited. By how much was the am-
meter in error?

25-3. Draw a hill diagram for a circiut consisting of a battery of 5 cells

each of which has an e.m.f. of 1.4 volts and an internal resistance of O.OS

ohm, all in series with a 3-ohm resistance. Find the current in this circuit.

How would the hill diagram be changed if this circuit were opened some-
where?

25-4. Draw a hill diagram for that part of a circuit consisting of a
1 10-volt source, a series resistance of 20 ohms, and a 12-volt storage battery
of negligible resistance being charged. What is the charging current?

25-5. Two resistors of 20 and 30 ohms respectively are connected

(1) in series and (2) in parallel. Compute the resistance in each combi-
nation.

25-6. How many resistors, each of 20 ohms, will be needed to carry 23

amperes on a, 115-volt line? Will they be in series or in parallel?

25-7. Three fixed resistors of 20, 30, and 40 ohms respectively have a
combined resistance of 43.3 ohms. How are the resistances arranged?

25-8. A 32-volt lamp has a resistance of 10 ohms and is to be connected
with a 110-volt line. Compute the resistance that must be used in series

with the lamp.
25-9. Three pieces of apparatus of 20, 24, and 36 ohms respectively

are connected in series across a 115-volt line. Compute (1) the current in,

and (2) the voltage across, each piece.

25-10. Two resistors, A and J5, of 140 and 100 ohms respectively are

connected in parallel and placed in series with a third resistor C, of 100

ohms. This combination is connected with a 110-volt line. Compute (1) the

current through each resistor, (2) the resistance of the combination, and

(3) the voltage across each resistor.



CHAPTER 26

Magnetism and the Electric Current

26-1. Some of the Effects of an Electric Current Are Not
Inside the Wire. Although the electrons do their moving within

the wire, some of the most important effects of the electric current

exist in the region outside of the wire. In this respect, the analogy
between water flowing in a pipe and the electron flow in a wire

breaks down. The effect just alluded to is magnetic and may readily

be described in terms of the same type of lines of force as those men-

tioned in section 22-4. Furthermore, these magnetic fields are

properties of space and exist in a vacuum as readily as in air or

other material mediums. At one time, the "electromagnetic ether
"

was invented as a medium filling all space, endowed with properties

necessary to explain electric and magnetic forces. But this medium
became more and more complicated and contradictory as additional

properties had to be given it, until it finally was discarded. It is

very possible that the contradictory features of the ether are an

indication of its polydimensional nature; if so our only hope of

handling it would be through pure mathematics, since we humans
are unable to visualize more than three dimensions. We shall see

later that the same thing has happened to light waves; indeed there

is an intimate relation between electromagnetic fields and light.

26-2. Magnetic Fields Around a Current in a Wire.
A single straight wire carrying a current is surrounded by a magnetic
field represented by lines in the shape of circles, the centers of which

231
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lie in the wire. All magnetic lines are closed curves; they act as if

they repelled neighboring lines of force and they all tend to shorten.

Therefore if the electrons cease their motion, first the inner lines

shrink to zero, after which the lines farther out are free to shrink.

In order to remember the direction of the magnetic lines of force

surrounding a current, one may think of grasping the wire with the

left hand with the thumb pointing in the direction of flow of the

electrons, in which case the fingers would curl about the wire in the

direction of the lines of force.

26-3. The Electromagnet. If insulated wire is wound about

a piece of soft iron, as in figure 26-1, and a current allowed to flow

through the wire, one end of the iron bar will become a north pole
and the other end a south pole. The left hand rule described in the

preceding section may be used to

determine which end is north. Or
the rule may be reversed with the

fingers of the left hand representing
the direction of flowof the electrons

and the thumb the north pole of

Figure 26-1. the electromagnet. If the piece of

iron is removed, the coil will still

behave like a magnet while the current flows, but the effect will be

much weaker. If hardened steel is used for the "core," the current

may be shut off and the steel will retain most of its magnetism; but

if soft iron is used for the core, the magnetic effect will be present

only while the current is flowing a very useful fact, since it makes

possible the operation of lifting magnets, electric bells, the telegraph,

telephone, and so on.

26-4. The Electric Bell. Figure 26-2 is a diagrammatic

representation of an electric bell. When the push button closes the

circuit, the electron current flows in the direction of the arrows,

producing a magnetic polarity as indicated. This pulls the iron

armature, A, to the right and causes the hammer to strike the bell.

But it also breaks the circuit at J3, and this results in the release of

the armature by the electromagnet. A spring causes the armature

to fly back and complete the circuit again, when the whole action is

repeated. The effect is therefore to move the hammer rapidly back

and forth and ring the bell.

26-5. Comparison of Fields Produced by Currents and

by Magnet Poles. The magnetic field produced by an arrange-
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ment like that in figure 26-1 but with an air core may be computed
by the equation

// =
**In

in which 77 is the magnetic field strength at a point in the center

of the core in millioersteds, which is the

practical unit, / is the current in am-

peres, n is the number of turns of wire,

and / the length of the coil in meters.

It will be remembered that mag-
netic fields also surround magnets

(section 22-4) . In this case the equation is

Figure 26-2.

where H is again the magnetic field at a

given point in millioersteds, p is the

strength of the pole in practical pole

units, km = 107 newton-meters2
per

pole unit squared, d is the distance

between the pole and the given point ty

in meters, and /* is a pure number equal
to unity for a vacuum and 1.00026 for

air. p, is called the permeability of the

medium.

Although these two methods of pro-

ducing magnetic fields seem very dif-

ferent, they are actually very similar.

The lines of force could be drawn in

figure 26-1 to look just about as they did in figure 22-1. The field in

figure 26-1 is caused by the circulation of electrons in the surround-

ing wire, whereas in figure 22-1, the field is due to "elementary

magnets" which consist of certain electrons within the iron atoms,

spinning on their axes in the direction of the fingers of the left hand

when the thumb points toward the north pole. The student will

also remember still another application of this principle in which a

feeble magnetic field was produced by rotating rapidly a charged
disk (section 23-3).

Illustrative Problems. (1) Find the magnetic field strength at the

center of a helical coil of 100 turns of wire half a meter long through which

a current of 3 amperes is flowing.
Solution: Such a coil is often called a solenoid. The value of the field at
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the center is independent of the radius of the helix, also independent of the

material inside the coil, that is, whether it is air, or iron, or a vacuum,
since the permeability, ju, does not occur in the equation. To find the field

strength it is necessary to substitute into the first equation of section 26-5

the values 7 = 3 amperes, n = 100, and / = 0.5 meter and obtain

4r(3)(100)H =
05

or H is 7,540 millioersteds, a rather feeble field.

(2) Find the numerical value of two opposite magnetic poles of like

strength, which, when placed each 25 centimeters away from and on op-

posite sides of a given point, will produce a field strength, at the given

point, of 7,540 milloersteds, in vacuo.

Solution: This time we must substitute into the second equation of

section 26-5 the values H = 3,770 millioersteds, km = 107 newton-meters2

per pole
2

, /z
= 1.000, and d = 0.25 meter and solve for one of the poles, p.

The other pole will produce a like effect and thus account for the entire

field. Thus

(1)(0.25)2

and p is 23.6 X 10~6 pole units or 23.6 micropole units.

26-6. Flux Density. A technical term called flux density is

obtained by dividing magnetic field strength by km and multi-

plying by the permeability. Flux density is represented by the

letter B by electrical engineers. That is

Thus, the two equations of section 26-5 become

Ikm

and B = ^

The flux density in a solenoid depends very much on the permea-

bility of the material involved. For example, the permeability of

various samples of steel and iron can easily run from a few hundred

to several thousand. The unit of flux density in the practical sys-

tem is the webcr per square meter. This is ten thousand times as

great as the corresponding unit in the c.g.s. electromagnetic system,
the gauss, so that 1 weber/meter

2 = 104
gauss. Flux density and

field strength in electromagnetism are related to each other some-

what as strain and stress are related in elasticity, or as effect and

cause in logic. The field strength is the cause and the flux density
is the effect.
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26-7. Flux. As might be guessed from the expression, flux

density, it is also thought of as the density of a quantity called flux
and measured in webers. It is an unfortunate fact that flux is an-

other entity visualized in terms of lines drawn in the same general
direction as the field lines. In fact when we speak of magnetic lines

we mean flux lines more often than we do field lines. Which is

meant can generally be inferred from the context. From now on we
shall always be specific. . If <i> stands for flux in webers, B is flux

density in webers/m
2

,
and A is area in square meters, the equation

connecting them is

$ = BA
26-8. Dimensions. So many technical terms have now accumulated

that some sort of classification is desirable. For this purpose we shall use

a system which reduces them all to combinations of four fundamental
entities: length, time, mass, and quantity of electricity. These we shall

denote by the letters L, T, M, and Q respectively. For example, the

dimensions of a velocity are those of length divided by time or L/l\
usually written LT~l

. From this we could infer that the unit is the meter

per second. A linear acceleration has the dimensions LT~2
. Since force

equals mass times acceleration by Newton's second law, the dimensions

of force are LT~~2M. Work or energy has the dimensions of force times

distance or L?T~2M. Electrical potential is work per unit charge or

L?T~2MQ~l
. Electric current is I^1

Q, measured fundamentally in cou-

lombs per second. Electrical resistance is L21^MQ- l/T- lQ or l?T-*MQ-*.
Magnetic field strength from the first equation of section 26-5 is current

divided by length or Lrl T~ l

Q. From the fact that // is also force per unit

magnetic pole we can derive the dimensions of pole asF/H or LT~*M/Lr l
T~*Q

or L2 T~*MQ~l
. From the second equation of section 26-5 we obtain the

dimensions of km , remembering that permeability, /z, is a pure number with

no dimensions, as L-1 T~ 1QL2/L2 T~1MQ-1 or L~ 1M~1Q2
. From any of the

equations of section 26-6 the dimensions of B are T~lMQ~ l
,
while those of

flux, <t>, are the same as those of pole, namely, I? T~l
MQ~~

l
. Finally, the

dimensions of ke from Coulomb's law for electric charges are obtained

from Fed2
/gi<72, remembering that like /z is a pure number. Thus the

dimensions of k. are LT~2ML2/Q2 or L*T~*MQ-*.
The product of the dimensions of ke and km are L?T-*MQr

'2LrlM~lQ2

or L2 T^~2
, that is, a velocity squared. If we remember the numerical values

we find that kekm = 9 X 109 X 107 meters2/sec.2 or 9 X 1016 meters2/sec.
2

.

This is the square of 3 X 108 meters/second, which happens to be the speed
with which radio, light, and other electromagnetic disturbances travel

through free space. This is, of course, no accident. The dimensions of

electric capacitance are obtained from C = Q/V or Q/L2 T~2MQ~l or

26-9. Effect of a Magnetic Field on a Current. Figure
26-3 represents a square electric circuit in a vertical plane in which

flows an electron current, 7, in a counterclockwise fashion as in-
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dicated by the arrows. If a vertical wire carrying a current, 7', is

placed near the square circuit, the direction of I
1

being downward,
the result will be that current T will tend to move toward the left.

This is because electrons moving in the

same direction lose some of their repulsion,

while electrons moving in opposite directions

repel each other more. A convenient way of

remembering the direction of the force on I'

is found to be as follows: observe first by
means of the left hand rule of section 26-2

that the square circuit produces magnetic
lines of force which inside the square are

away from the observer; then using the left

hand again as in figure 26-4, recite the

physical fact, "Current (1) in & field (2) pro-

duces motion (3)," putting into position in

turn the thumb, forefinger, and middle

finger. That is, the thumb will represent the

current, the forefinger the field, and the Figure 26"3 '

middle linger the motion of the wire, which is toward the left.

26-10. Comparison of Forces Exerted by a Magnetic Field

on Poles and Currents. A magnetic field, 77, exerts a force, F,

on a magnetic pole, p, which is

given by the equation

F = Hp

where F is in newtons, II in

millioersteds, and p in pole
units. The direction of the force

is the same as the direction of

the field.

A magnetic field, 77, exerts a

force, F, on a wire of length, /,

igure "
'

carrying a current, 7, in a me-
dium of permeability, /*, given by the equation

Comparing this with the first equation of section 26-6 it will be

seen that it is simpler to say
F= 311

where F is in newtons, B in webers/m
2
,
/ in amperes, and / in meters.
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The force, the flux density, and the current are all at right angles
to each other; the force in the direction of the middle finger of figure

26-4, the flux density the forefinger, and the current the thumb.

26-11. Illustrative Problems. (1) Check the second equation of sec-

tion 26-10 dimensionally.
Solution: The usual notation for stating that the dimensions of F are

L T~*M is to write the equation

Similarly f/x]
= 1

[/]
= L

[km]
= L-IM-*&

The relation, [p]
=

1, has a totally different meaning from that of p,
= 1.

The first means that /* is a pure number while the second means that not

only is it a pure number, but its numerical value is 1.000. Another way of

indicating that n is a pure number is to say [/z]
= LPT^M^. Now to

check the relation [F]
=

[/z HIl/km]
we have

Since the right hand side does reduce to the left hand side, we can say that

we have checked the equation dimensionally. It should be possible to

check dimensionally any equation of physics.

(2) Find the side push on a wire 20 centimeters long which carries a

current of 2 amperes and lies in the armature of a motor in a field of 10,000
oersteds.

Solution: Assuming this wire to lie in the air gap between the pole

faces, ^ = 1. We also have I = 0.2 meter, 7=2 amperes, // = 10,000,000

millioersteds, and km 107 newton-meters2/pole
2

. Thus from the second

equation of section 26-10

_ (1)(10,OQO,000)(2)(0.2)

10,000,000

This reduces to F = 0.4 newton. Since there are 4.45 newtons to the pound,
this is about 0.09 pound or 1.44 ounces. But if there are, say, 200 of these

conductors under the pole pieces of the motor at any one time, the total

force would be about 18 pounds and would exert a satisfactory torque.

26-12. Motors and Meters. Figure 26-5 is to be thought
of as the cross section of a motor, the armature of which is free to

rotate between the pole pieces (labeled N and 5). Let us adopt the

convention that O represents the cross section of a wire in which

the electrons are moving toward us and a wire with electron

current away from us. In the former case, we are seeing the tip of

an arrow and in the latter case, the tail. We should first check to see
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if the flow of current in the field as indicated by the four arrows

would actually make the left hand north and the other south. Grasp-

ing the left hand pole with the left hand, with the fingers pointing in

the direction of the field current, does result in pointing the thumb

upward in the direction of the north pole. Next apply the thumb

Figure 26-5.

and two finger rule to determine the direction of rotation of the

armature, again using the left hand. Current (1) in a field (2) pro-

duces motion (3). Concentrating on the air gap between the north

pole and the armature, we find wires with electrons coming toward

us, so we point the thumb of the left hand toward us. The field

goes out of the north pole through the armature into the south pole,

so we point the forefinger in that direction. The middle finger by
now is pointing down, which is therefore the direction of rotation of

that side of the armature. For practice the student should apply
the rule again to convince himself that the other side of the arma-

ture rotates upward.
The motor is arranged with brushes to feed in the current to the

armature always in the same direction in spite of the rotation, so

that the effect is continuous. If, on the other hand, an apparatus
is constructed so that the tendency to rotate is counterbalanced by
a spring, it is possible to move an indicator across a scale to an ex-

tent dependent on the strength of the current flowing. Such a

"meter" is called a galvanometer. A galvanometer may be arranged

to measure either current (ammeter) or voltage (voltmeter). Inside
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the box housing, the ammeter Is a galvanometer in parallel with a

heavy copper strap of low resistance. When the ammeter is put in

series with the rest of the circuit, most of the current goes through
the strap, but what little goes through the galvanometer is still

proportional to the total current, and the scale may be graduated
to give the reading of the total current. Inside the box housing of

the voltmeter is a galvanometer in series with a considerable resist-

ance. When the voltmeter is put in parallel with the apparatus
whose voltage is desired, the small current through the voltmeter

will be proportional to the potential drop across its terminals and

again the scale of the instrument may be calibrated to give this

reading in volts.

26-13. Induced Electromotive Force. Of the three com-

mon methods of producing an electromotive force, namely, the

chemical method utilizing a voltaic or storage cell, the thermo-

electric method, and the magnetic, the last is by far the most im-

portant commercially. We think of it as a process of "cutting lines

of force" with a conductor, and the "induced electromotive force"

in volts is numerically equal to the rate at which the lines of force

are cut.

The reason that electrons tend to move through a wire while it

is moving at right angles both to itself and to a field may be seen by
considering a simple experiment. Imagine pushing a metallic wire,

held parallel to the plane of the paper and perpendicular to the bar

magnet, down into the paper just beyond the letter TV in figure 26-1.

The moving electrons, which constitute the electric current in the

insulated wire of the electromagnet, must be thought of as coming

up out of the paper at the top of the diagram and going down into

the paper on the under side. The free electrons in the metallic wire

that we are pushing down through the field will thus find themselves

moving in the same direction as the electrons that are going into

the paper. As we have seen, electrons moving parallel with each

other lose some of their repulsion for each other. For this reason the

free electrons in the moving wire will tend to move along the wire in

a direction toward the bottom of the page; if the wire is part of a

closed circuit there will be an electron current in this direction. At

any rate there will be a redistribution of electrons constituting an

electromotive force.

This e.m.f. exists only during the relative motion of the wire

and the field, and it makes no difference which one of the two does
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the moving. If E represents the e.m.f . in volts, and $ is the number
of flux lines or webers cut by the wire in time, / seconds, then

The student will notice that this equation checks dimensionally.
Another equation closely resembling this is

E = Blv

where again E is e.m.f. in volts, B is flux density in webers/w2
,
/ is

the length of the wire that is cutting the field in meters, and v is the

velocity of this wire in meters per second.

26-14. Induction Coil; Transformer. We can easily arrange
it so that a magnetic field moves or varies in the presence of a

stationary wire. For example, in figure 26-1, assume an additional

wire to be wound around the iron core with the two ends of the new
wire electrically connected. If, now, the original circuit is broken,
the accompanying magnetic field will shrink to zero in the presence
of the new wire. The relative motion of the shrinking field and the

wires will result in an electromotive force in both the old and the

new wire in the same direction in which the original current was

flowing. Since the circuit was broken in the original wire, no current

flows in it, but since the new circuit is closed, a momentary current

flows in it. When the original battery circuit is again closed, there

will be a momentary current in the new wire in the opposite direc-

tion, due to the increasing magnetic field in the presence of the wire.

If the new circuit consists of several turns of wire, we may re-

gard the e.m.f. 's in each turn as in series with each other. We shall

now call the original windings
the primary, and the new wind-

ings the secondary, circuit. An
induction coil (see figure 26-6)

is a device of this type. The

primary circuit consists of a

few turns of insulated wire on

an iron core with connections

that remind us of the principle

of the electric bell. The ham-

mer again flies back and forth, thus constantly interrupting current

in the primary circuit. This causes the flux lines to shrink and grow

regularly at a rapid rate. The secondary circuit consists of many

Figure 26-6.
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turns of fine wire also carefully insulated. Since these turns lie in the

rapidly changing field, they will be the seat of an induced electro-

motive force and on account of the many turns, the total voltage
will be very large, thousands of volts. A spark will thus jump be-

tween the terminals of the secondary circuit for a considerable distance.

Instead of interrupting the primary circuit mechanically, we

may feed into it an alternating current (abbreviated to a.c.} in which

the electrons reverse their direction of motion continuously. Thus
the flux lines constantly shrink to zero and expand in the other direc-

tion. Again there will be a voltage induced in the secondary. Such

an apparatus is known as a transformer. The relation between the

ax. voltage, EPJ applied to the primary of the transformer and that

induced in the secondary, Es ,
is given by the equation

where np is the number of turns of wire in the primary and n, the

number of turns in the secondary circuit. In the transformer it is

much more efficient to make the iron core more in the shape of a

torus (doughnut-shaped) so that the flux lines may exist in iron

throughout their entire length. Transformers are used to "step up"
and "step down" voltages. For example, electric companies find it

more economical to transmit their power at high voltages and low

currents (hence small PR heat losses) to the places where it is to

be used, then step down the voltage to 110 volts by means of trans-

formers located on poles at the point of delivery.

26-15. Inductance. One more technical term must be defined

here for use in our coming discussion of alternating currents, namely
inductance. Inductance plays just about the

same part in electrical theory that mass does

in mechanics. Mass may be defined as the

ratio between a force and the resulting rate of

change of velocity; similarly inductance may
be defined as the ratio between an electro-

motive force and the resulting rate of change
of current. Up to this time, we have con-

sidered our circuits after a steady state had

been established, in which case the only effect of the impressed vol-

tage was to maintain the constant current through the given resis-

tance. But when the current is first turned on, it must grow from

zero to its final value, and part of the voltage is used for this purpose.
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Electrons behave as if they possessed inertia
;
if they are at rest, it re-

quires an electromotive force to start them moving, and once they
are moving, they tend to continue in motion even if it means jump-

ing the gap when the switch is opened. This electrical inertia is to

be identified with inductance just as we identified mechanical

inertia with mass. The equation connecting the quantities in-

volved is

V = (L) (rate of increase of current)

V represents a portion of the impressed voltage which is increasing

the current and is measured in volts, and the rate of increase of

current is measured in amperes per second. The unit of L is the

henry, in memory of Joseph Henry (1797-1878), an American

physicist. Dimensionally, inductance is L 2MQ^2
.

We are able to explain electrical inertia in terms of induced elec-

tromotive forces, whereas mechanical inertia must simply be as-

sumed as a fact. At the instant when a voltage is first applied to a

piece of apparatus such as the electromagnet in figure 26-1, no cur-

rent is flowing and no magnetic flux exists. When the current starts

to flow and the magnetic flux lines begin to come into existence, they
cut across the wire in the electromagnet in such a direction as to

induce an electromotive force opposing the impressed voltage.

Thus at any instant previous to the establishment of the steady

state, part of the applied voltage is utilized in opposing this induced

electromotive force and the rest in maintaining the current that

exists at the moment. This is why the V in the equation of the

preceding paragraph of this section is merely a portion of the total

impressed voltage. When the switch is opened and the current begins
to shrink, the motion of the decreasing flux in cutting the wire is such

as to induce a direct electromotive force which tends to keep the

current flowing and makes an arc across the switch.

The kinetic energy of the electrons flowing in a circuit may be

written

k.e. =

just as mechanical translatory kinetic energy was \mp. In this

equation, k.e. is in joules, L in henries, and / in amperes. It is

this energy which appears in the form of heat and light in the spark
or arc when the switch is opened.

There are formulas for computing the inductances of various

types of circuits. Only one of these will be given here, namely, that

for an electromagnet like the one shown in figure 26-1. If / is the
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length of the bar of iron in meters, A its cross-sectional area in

square meters, and /JL its permeability, then

~
kj

Again L is in henries, n is the number of turns of wire, and km is 107

newton-meters2

per pole unit squared. By remembering the physical

dimensions involved, it will be seen that km may also be expressed as

107 coulomb2
per kilogram per meter or as 107 meters per henry.

26-16. Illustrative Problems. (1) Find the inductance of the primary
of a transformer if the iron core is in the shape of a torus of mean circum-

ference 0.7 meter, cross section 10 cm. 2
,
and permeability 2,000, wound

with 200 turns of wire.

Solution: It is merely necessary to substitute into the last equation of

the preceding section the values n = 200 turns, A= O.OOlOw 2
, /x

= 2,000,

kw = 107
meters/henry, and / = 0.7 meter. Thus we have

_ 47T (200) (0.0010) (2,000)

UO 7
) (0.7)

or L = 0.718 X 10~ 3 henries. It is more customary to express this as

0.718 millihenry.

(2) If the resistance of this electromagnet is half an ohm, find the rate

at which the current is increasing a thousandth of a second after the switch

has been closed in a 6-volt circuit; assume that the value of the current at

this instant is 6.24 amperes.
Solution: When the current is 6.24 amperes, 3.12 volts is necessary

to make it flow on a 0.5-ohm circuit. Thus of the 6-volt total, 2.88 volts

is still available to make the current grow. Substituting then in the first

equation of section 26-15 the values V = 288 volts and L = 0.000718

henry, we can solve and find that the rate of increase of current at this

instant is 2.88/0.000718 or 4,010 amperes per second. Since the final cur-

rent in this circuit is to be 6/0.5 or 12 amperes and it is already 6.24 am-

peres, at this rate it will take only 5.76/4,010 or 0.001436 second more to

reach maximum value. As a matter of fact, the nearer the current gets to

the 12-ampere mark the slower is the rate of increase, so that theoretically

it would require an infinite time; for all practical purposes, however, we
consider the current steady after a few thousandths of a second.

(3) How much energy will appear in the spark when this circuit, with

a 12-ampere current flowing, is broken?

Solution: We need the second equation of section 26-15. L is 0.000718

henry, 7 is 12 amperes, therefore

k.e. } (0.000718) (12
2
)

Thus the energy of the circuit which was originally contained in the mag-
netic field but which now appears in the spark at the switch is 0.0517

joule. This is only about a hundred thousandth of a Calorie or about

0.00005 B.tu.
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26-17. Lenz's Law. There is always some motor action in a

generator and some generator action in a motor. This means that

while it is very easy to turn a generator before the circuit has been

closed (that is, while no current is flowing), the moment a current

commences to flow, a side push (motor action) develops opposite to

the direction of rotation. If the side push were in the same direction

instead of the opposite direction, the generator would run itself and

we should have perpetual motion. As a motor operates, the arma-

ture wires cut lines of magnetic force and an electromotive force is

produced (generator action) opposite to the direction in which the

current is flowing (we call it a back e.m.f.). If this back electro-

motive force were a direct electromotive force, we could use it to

run the motor and have another case of perpetual motion. But we
have just seen that perpetual motion is a violation of the law of

conservation of energy. Either of these statements, one for the

generator and the other for the motor, may be considered a state-

ment of Lenz's law. The statements may be reworded slightly so as

to read (1) when a conductor moves in a magnetic field, a current

tends to be produced, the side push on which is in the direction

opposite to the motion of the conductor, and (2) when a conductor

carries a current in a magnetic field, motion tends to be produced,
the direction of which is such as to induce an electromotive force in

opposition to the current already existing in the conductor.

SUMMARY OF CHAPTER 26

Technical Terms Defined

Permeability. The ratio between the force between two magnetic poles
in vacuo and the force between the same poles the same distance apart
in another medium is the permeability of this medium.

Flux Density. The product of the magnetic field strength by the permea-

bility of the medium and divided by the constant &w ,
which is 107 new-

ton-metcrs2 per pole unit squared, gives the flux density in practical

units (webers per square meter).

Flux. The magnetic flux through a given area is the product of the flux

density by the area. The practical unit of flux is the weber.

Dimensions. Dimensions of physical quantities are reductions of these

quantities to the four fundamental quantities in physics, length, time,

mass, and quantity of electricity. A few dimensions are as follows.
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Physical term Symbol Dimensions

Length I L
Time t T
Mass m M
Quantity of electricity q Q
Velocity v LT~l

Acceleration a LT~Z

Force F LT-M
Energy tfT-M
Potential V L2

T~*MQ-
1

Current / T-*Q
Resistance R
Magnetic field strength II

Magnetic pole p
Magnetic constant k

Flux density B T~ lMQ- }

Flux * i:
2
T- Mf(J-

1

Electrostatic constant ke 1?T >2

M()
2

Capacitance C Ir*I*M''(

lp

Induced E.M.F. An induced electromotive force is produced by cutting

magnetic flux by a conductor. The value of the induced electromotive

force in volts may be found by dividing the flux in webers by the time

in seconds consumed in cutting it.

Inductance. The inductance of a circuit is the ratio of that portion of

the voltage employed in making the current increase by the rate of

increase of the current. Its unit is the henry. Inductance in electricity

corresponds to inertia in mechanics.

Laws, Rules, and Principles

Left Hand Thumb Rule. If the fist of the left hand be used with only the

thumb extended, the thumb shows the direction of the magnetic flux

if the closed fingers indicate the direction of flow of the electrons around

an electromagnet. Or the thumb may indicate the direction of flow of

the electrons along a wire and the fingers the magnetic flux around the

wire.

Left Hand Thumb and Two Finger Rule. If the thumb and the first two

fingers of the left hand are extended in the most natural manner so that

all three are at right angles to each other, they may be used to illustrate

(1) For Side Push, the relations involved in the statement (1) "A cur-

rent (a) in a field (b) produces motion (c)" in which

the thumb is (a) and the next two fingers are (b) and (c) respectively, or

(2) For Induced Electromotive Force. (2) "Motion (a) in a field (b) pro-
duces e.m.f. (c) in which case (a),

(b), and (c) still refer to the thumb and two fingers respectively.

Two Methods of Producing Magnetic Fields. Method (1), by magnet

poles. Equation
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Method (2), by an electric current. Equation

Two tnects of a Magnetic Field. Effect (1), on a magnetic pole. Equation
F = mil

Effect (2), side push on a current. Equation

Lenz's Law. Both the induced electromotive force produced by cutting

magnetic flux with a conductor and the side push exerted on a current-

bearing conductor in a magnetic field arc in such a direction as to avoid

a violation of the law of conservation of energy.

PROBLEMS

26-1. Draw a diagram of an electromagnet shaped like a horseshoe

with poles labeled north and south respectively, showing the necessary
directions of the electron currents.

26-2. Find the current which must flow in a solenoid of 300 turns, one
meter long, such that the magnetic field strength at its center may be

0.166 oersted. If the axis of this solenoid is placed in a horizontal position
at rigKt angles to the earth's magnetic field at a place where the latter is

also 0.166 oersted, in what direction will a compass needle at its center

point? Draw a diagram to illustrate.

26-3. A magnet, 25 centimeters between poles, has poles of strength
60 microunits. Find the strength of the magnetic field at a point 15 centi-

meters from one pole and 20 centimeters from the other.

26-4. What is the flux density through the center of the solenoid of

problem 26-2, (1) with an air core, and (2) with an iron core of permea-
bility 1,500?

26-5. Find the total flux in a toroidal iron ring of permeability 2,000,
mean circumference 90 centimeters, and cross-sectional area 12 cm.2

,
if

it is wound with 300 turns of insulated wire which carries a current of

2 amperes.
26-6. Newton's law of gravitation is expressed

in which the numerical value of kg is 6.66 X 10"11 when F is in newtons,
mi and W2 in kilograms, and d in meters. Find the dimensions of kg and

assign units to its numerical value.

26-7. Magnetic moment is defined as the product of the length of a

magnet by the strength of one of its poles. Find the dimensions of mag-
netic moment. A current of / amperes flowing in a circular wire of one

turn, such that the area of the circle is A square meters, is equivalent to a

magnet of moment
A In

km

Check this relationship dimensionally.
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26-8. Assume the lines of force in the earth's magnetic field to run from
south to north and to dip below the horizontal at an angle of 74 degrees.
The total intensity of this field is 0.59 oersted. If a rod two meters long
that is part of a closed circuit is held at right angles to this field in a

vertical plane and moved toward the west at the rate of 30 feet per second,
what electromotive force will be induced and in what direction?

26-9. If the rod of the preceding problem is stationary, but carries a
current of SO amperes, what force acts on it and in what direction?

26-10. If the horizontal intensity of the earth's magnetic field is 0.166

oersted, what force does this field exert on one pole of a compass needle
the pole strength of which is 0.001 of a micropole unit?

26-11. A certain motor has 300 conductors under the pole pieces, each
0.3 meter long and carrying a current of 5 amperes. If the field through the
air gap in which these conductors lie is 30,000 oersteds and the radius of

the armature is 0.25 meter, find the torque acting on the armature.

26-12. As the armature of a motor rotates in the magnetic field sup-

plied by the pole pieces, a back electromotive force of 1,105 volts is induced
in the armature. This motor runs on 110 volts and the armature has a
resistance of 0.2 ohm. What is the armature current? What power is

supplied to the armature? How much of this power goes into heat? Find
the electrical efficiency of the armature.

26-13. A galvanometer has a resistance of 25 ohms and requires a
current of one milliampere to move its needle along its scale one division.

What resistance must be put in series with it inside the instrument case so

that there will be one volt drop across the terminals of the instrument
when the needle moves one division? Into what instrument has the

galvanometer now been transformed? Draw a diagram showing how it

could be used.

26-14. A galvanometer has a resistance of 25 ohms and requires a
current of one milliampere to move its needle along its scale one division.

What resistance must be placed in parallel with it (shunted across it) in-

side the instrument case so that a combined current of one ampere will

go through both galvanometer and shunt when the needle moves one
division? Into what instrument has the galvanometer now been trans-

formed? Draw a diagram showing how it could be used.

26-15. If, instead of feeding the motor described in problem 26-11 a

current, it is driven at the rate of 2,330 revolutions per minute, it becomes
a generator. What electromotive force will then be induced in each of its

conductors?

26-16. A step down transformer is desired, the high side of which may
be attached to a 110-volt 60-cycle line and the low side to furnish 4 volts

with which to ring a bell. If there arc 1,000 turns of wire in the primary,
how many turns must there be in the secondary?

26-17. Find the number of turns that must be wound on an iron core

of permeability 1,600, length 80 centimeters, and cross-sectional area 20

square centimeters to make up an inductance of one henry.

26-18. Find the energy in joules residing in the magnetic field sur-

rounding a current of 10 amperes as it flows through an inductance of

5 henries. What ultimately becomes of this energy?
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26-19. A certain circuit has a resistance of one ohm and an inductance
of 10 henries. One hundredth of a second after the switch is closed in this

circuit, the current has risen to one thousandth of its full value. If 10 volts

is impressed on this circuit, how fast is the current increasing at this

instant? Ten seconds after closing the switch, the current has risen to

63.3 per cent of its full value. How fast is the current now increasing?
One minute after closing the switch, the current has reached 99.75 per cent
of its full value. How fast is the current now increasing?



CHAPTER 27

Alternating Currents

27-1. Qualitative Description of an Alternating Current.
The simplest type of alternating current is that in which the electrons

oscillate in the manner described in chapter 15, that is, in simple
harmonic motion. Thus there is a certain instant in each cycle
when they are approximately at rest, a quarter of a cycle later they
are moving with maximum velocity in one direction, and half a

cycle after this, they are moving with maximum velocity in the other

direction. If the velocity of the electrons is graphed against time,
we obtain a diagram like the curve ADF in figure 27-2, which is the

well known sine wave. The accompanying magnetic field also goes

through a similar cycle, increasing from zero to a maximum, shrink-

ing to zero, building up to a negative maximum, and again becoming
zero. The common length of a cycle is one sixtieth of a second,

although other values are occasionally used, such as 25 cycles per
second or 500 cycles per second. It is thus seen that in a discussion

of alternating currents, several more variables are involved than in

direct current theory. These will not only include such items as

voltage, current, and resistance, but, since the current is continually

varying, inductance will become important; also frequency and

capacitance will enter into the calculations.

27-2. Mechanical Analogies. There is a close parallelism
between the behavior of an electric condenser and the phenomenon
of elasticity in mechanics. It is easy to take the first electron out of

249
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the conductor on one side of a condenser and put it in the other side.

In order to take the second electron away from the now positive

plate, we must oppose the attraction between the opposite charges,
and to put the electron on the now negative plate, we must oppose
the repulsion of like charges. And the more charge the condenser

already has, the more voltage is necessary to produce any further

charge, just as the more an elastic rod is bent, the more force is

required to do any more bending, by Hooke's law. In the latter

case, we have F = kx while in the electrical case we have V = ~^Q

and we see that 1/C corresponds to "stiffness" in mechanics. Some-

times it is said that C in electrical theory corresponds to "com-

pliance" in mechanics.

We have already seen that inductance in electricity corresponds
to mass or inertia in mechanics.

It is furthermore true that electrical resistance corresponds

closely to fluid friction, which is proportional to the velocity with

which an object moves through the resisting fluid medium. Thus
E = RI corresponds to F R'v where F is the mechanical force

necessary to make the object move through the fluid with velocity,

z;,
and the proportionality factor, R

1

',
is the mechanical resistance.

The behavior of electrons forced to execute simple harmonic

motion with frequency, n, in a circuit containing resistance, R, in-

ductance, L, and capacitance, C, is then quite analogous to the

behavior of a fairly heavy pendulum bob attached to a spring of

medium stiffness and forced to move through a viscous liquid in

accordance with the requirements of simple harmonic motion. It

will pay us to consider these three effects separately.

27-3. Effect of Resistance Alone. In order to eliminate

the effect of inductance (electrical inertia) we shall make the pen-
dulum bob very light, say of balsa wood. By removing the spring,

we are freed of capacitance effects. We may imagine the viscous

fluid to be molasses. Due to Archimedes' principle, it will be nec-

essary to exert a downward force on the balsa wood merely to hold it

under the surface, but this force is constant and need not be con-

sidered further. Since we are interested in the relationship between

voltage and current, the relations between force and velocity in the

mechanical analogy are to be considered.

We are starting with the simplest case. It is merely necessary
with viscous friction to exert a large force at the same time that we
wish a large velocity; therefore we say that the force varies har-
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monically in phase with the harmonic variation of the velocity. This

means that when the velocity is zero, the force is zero; when the

velocity has reached its maximum value in one direction (at the

center of the motion), the force is also a maximum in that same
direction. Ohm's law therefore holds for this case with no amend-
ments

R - IR

Here as usual ER is in volts, I in amperes, and R in ohms.

27-4. Effect of Inductance Alone. In order to determime

the effect of inertia alone, the pendulum bob must be made massive,

say 20 pounds of lead; it must move in a frictionless medium, air,

or better yet, in a vacuum; furthermore there must be no restoring

force of a capacitance-like nature. This means that the supporting
cord must be very long.

Suppose we start at A in figure 15-3 with zero velocity. Due to

Newton's second law, if we wish an acceleration (which at this point
is to be a maximum acceleration) we must apply a corresponding
force. By the time our lead weight has reached the point O, this force

must have diminished to zero, but the velocity will then be a maxi-

mum. The weight will "coast" through the central point with

maximum velocity and zero acceleration (which implies zero force),

but beyond a small force must be applied in the negative direction.

This negative force increases to a maximum while the velocity

shrinks to zero and then picks up a negative value. If the cycle is .

divided into quarters and the quantities described respectively at

A, O y By O, and A, the forces at these points are respectively positive

maximum; zero; negative maximum; zero; positive maximum,,
while the velocities are respectively zero; positive maximum; zero;

negative maximum; and zero. It will be noticed that the velocities

are a quarter cycle behind the forces. In the electrical analogy, we

say that the current lags ninety degrees behind the voltage. The

voltage and current in this case are related by the equation

EL = 2-irnLI

where EL is in volts, n in cycles per second, L in henries, and 7 in

amperes.

27-5. Effect of Capacitance Alone. The mechanical anal-

ogy in this case is obtained by replacing the lead pendulum bob with

balsa wood again, retaining the nonviscous medium, but using a

spring in such a way that the equilibrium position of the bob will be
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at 0. Then the force will be a negative maximum value at A
9
where

the velocity is again zero. This time the successive values of the

forces at A, O, j5, O, and A are negative maximum; zero; positive

maximum; zero; negative maximum, while the velocities are as

before zero; positive maximum; zero; negative maximum; and zero.

This time it will be noticed that the velocities are a quarter cycle

ahead of the forces and the current is also leading the voltage by
90 degrees. The equation is

where Ec is in volts, I in amperes, n in cycles per second, and

C in farads.

27-6. The Joint Effect of Resistance, Inductance, and

Capacitance. Returning now to the heavy lead pendulum bob

with spring attached and moving in molasses, the resultant force

will be the vector sum of three forces two of which are 180 degrees
out of phase with each other and the third 90 degrees out of phase
with each of the others. Likewise in the electrical case, the total

voltage E is related to the three component electromotive forces

by the equation

This may be seen by a reference to figure 27-1.

He

Figure 27-1.

Since the current is always in phase with ER we have the same angle
between / and E as between ER and E. Thus if O'A 1

of figure 27-2

represents E, then 0'B f
will represent /.

27-7. The Rotating Vector Diagram. Figure 27-2 serves

to show how a "sine wave" may be depicted by a vector rotating
counterclockwise. The arrow OfA 9

may be imagined to rotate uni-

formly and its projection at any instant on the axis of ordinates
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will give the points on the sinusoid. A is the projection of 0*A 1

at

zero time, m after O 1

A' has rotated counterclockwise through 90

degrees, D at 180 degrees and F at 360 degrees. The dashed sinusoid

represents the current in a similar fashion; the current lags behind

Figure 27-2.

the voltage in this diagram. It will be seen that the rotating vector

diagram is the full equivalent of the data shovn by. the two sinusoids

and is much more compact.
If EL happens to be smaller than c , figure 27-1 will be replaced

by figure 27-3.

Figure 27-3.

In this case figure 27-2 is replaced by figure 27-4 and we say that

the current leads the voltage.

Figure 27-4.
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27-8. The Alternating Current Equation. Putting together
the equations of sections 27-3, 27-4, 27-5, arid 27-6 gives

which when solved for I gives

7 =
E

If we let X stand for 2wnL --
-, this becomes

/= E
I V%

X is called reactance and is measured in ohms.

By definition

XL =

Xc =

XL is called inductive reactance and Xc capacitive reactance.

If Z stands for

V& + x*

we have

7 =
Z

Z is called impedance and is likewise measured in ohms. Thus

Z = p

27-9. Illustrative Problem. A circuit consists of an alternating cur-

rent generator of electromotive force 120 volts, frequency 60 cycles, and

negligible impedance, in series with a resistance of 10 ohms, a coil of

Figure 27-5.

negligible resistance but of 0.1 henry inductance, and a condenser of 100

microfarads capacitance. Find the current, the phase relation between
current and voltage, and also the voltages across each part of the circuit.



27-9] ALTERNATING CURRENTS 255

Solution: The diagram representing such a circuit is shown in figure

27-5. A condenser represents a break in the circuit through which a direct

current will not pass, but in the case of an alternating current, the electrons

first pile up on one side of it, at the same time draining out of the other side,

then drain out of the first side and pile up in the second side, repeating this

at each cycle. The higher the frequency of an alternating current, the less

is the reactance of a condenser, and the greater the reactance of an in-

ductance; on the other hand, condensers offer more reactance to low

frequency alternating currents and inductances very little reactance.

In our problem the inductance has a reactance, XL, of 27r(60)(0.1)
=

37.7 ohms and the capacitance a reactance, X c ,
of

_
, or 26.5 ohms

27r(60)10-4
Then

X = XL - Xc = 37.7 - 26.5 = 11.2 ohms

The impedance, Z, of this circuit then is VlO2 + (11.2)
2 == 15.01 ohms,

and by the next to the last equation of section 27-8

. E 120 7007 =
Z
"

15XH
= 7'" amperCS

Since in this circuit everything is in series with everything else, the

same current is flowing at each instant in all parts of the circuit, hence

7.99 amperes is the first result we seek.

By the equation of section 27-3, ER ,
which is the voltage across AB, is

(7.99)(10) = 79.9 volts. This is the horizontal vector of figure 27-1.

By the equation of section 27-4, EL ,
which is the voltage across BC, is

(37.7)(7.99) = 301 volts, which is greater than the impressed voltage (120

volts) on the entire circuit. It is thus more dangerous accidentally to get
across the points EC with the fingers than across AF. This voltage is

represented by the vector in figure 27-1 which points upward.
By the equation of section 27-5, c ,

which is the voltage across CD, is

(7.99) (26.5)
= 212 volts, which is again greater than the impressed voltage.

This is shown in figure 27-1 by the downward vector.

In figure 27-1, the vector labeled EL
- Ec is equal to 301 212 or

89 volts. This is the voltage across ED of figure 27-5.

As a check, E should be V(79.9)2 + (89.0)
2 or 119.6 volts, which

rounds off to 120 volts.

The sine of the angle between / R and E in figure 27-1 is 89/120 or

0.742. This corresponds to an angle of 47.9 degrees. See appendix 7.

Therefore the phase relation between the current and the voltage in this

circuit is that the current lags 47.9 degrees behind the impressed voltage.

However, although the current in the circuit is everywhere the same at

any given instant, ,the voltages are different, although they are such as to

add vectorially to 120 volts. Thus in the resistance AB the current is in

phase with the voltage. In the pure inductance, EC, the current lags
90 degrees behind the voltage, while in the pure capacitance, CD, the

current leads the voltage by 90 degrees.
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Actually there is no such thing as an inductance without resistance

nor a resistance without inductance. When it is desired to wind a resistance

"noninductively," the middle point of the wire is found; the wire is then

bent back on itself and wound double, so that everywhere in the circuit,

wherever the current is flowing in a given direction in one wire, there is

a wire adjacent to it containing the same current in the opposite direction.

Therefore the magnetic fluxes nearly cancel out.

27-10. Resonance. In the illustrative problem just solved, EL

and Ec were both larger than E, but added vectorially (also in this

case algebraically) to something less than R. If EL and Ec should

be numerically alike and thus add to zero the condition of the circuit

is described as that of "series resonance." Thus we have resonance

when the inductive reactance is numerically equal to the capacitive

reactance. In this case the reactance, X, of the circuit reduces to

zero and the impedance of the circuit is equal to the resistance.

Representing this situation by one equation we have

2irnL =
1

If we solve this equation for n, we obtain

1

n =

It is therefore possible in any given circuit to find a frequency for

which the circuit will be in resonance. We shall see that tuning a

circuit to resonance becomes important in radio. This is because

at the resonant frequency the current is very much larger for a

given impressed voltage than at any other frequency.

27-11. Power. One of the power equations that we met in

the discussion of direct current circuits still holds in alternating
current theory; the other one does not.

Power = PR

still represents the rate of heating in watts if I is in amperes and R
is in ohms. In fact, we could use this equation to give us a picture
of the alternating current ampere. Put into words, we have the

statement that an alternating current ampere is so chosen that it

will generate heat in a given resistance at the same rate as one

ampere of direct current.

In figure 27-6, we have three similar triangles, all containing
the same acute angle, 6.

The second is obtained by multiplying each side of the first by the
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current, 7, and the third by multiplying each side of the second by
the current. Thus the hypotenuse of the second triangle is IZ or

the impressed voltage, and in the third triangle, the horizontal side

is PR or the power P. Since the cosine of an angle is the ratio of

the leg of a right triangle adjacent to the angle to the hypotenuse

(see appendix 6) we have from the third triangle of figure 27-6

P = EfcosO

which is more complicated than our similar direct current relation.

Cos is called the powerfactor of the circuit. Its value varies between

zero for a pure reactance, either inductive or capacitive, and unity
for a pure resistance. That is, no power would be consumed in a

pure inductance or a pure capacitance, if there were such things.

27-12. Alternating Current Meters. In the usual direct

current ammeter, the side push on a wire that carries a current in a

magnetic field is utilized. Since a "permanent magnet" is employed,
the deflection is nearly proportional to the first power of the current.

If an alternating current is put through this type of meter, the

needle merely attempts to oscillate about the zero position with a

frequency of n cycles per second. Therefore the permanent magnet
is replaced by an electromagnet, and since this reverses at the same

frequency with which the current reverses, a deflection of the needle

is obtained which is now proportional to the square of the current.

But it is possible to calibrate the scale directly in amperes by placing,

for example, a 5 where 25 should be, a 4 where 16 should be, and so

on. This results in compressing the low end of the scale in com-

parison with the upper end.

The deflection of the needle is actually proportional to the

average (or mean) of the square of the current, and by the device

of calibrating the scale as we do, we read directly the square root of

the mean squared current. We abbreviate this to root-mean-square
current. Similarly root-mean-square voltages are read from volt-

meters. In the case of a sinusoid, such as those in figures 27-2 and

27-4, the root-mean-square values are 0.707 of the maximum values.
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It is thus immaterial whether we use as vectors in our rotating vector

diagrams the maximum values as in figures 27-2 and 27-4 or the

root-mean-square values as in figures 27-1 and 27-3, since one is

directly proportional to the other. In general the root-mean-square
values are the more convenient,

27-13. Parallel Circuits. In this book we shall say very
little about parallel alternating current circuits other than to point
out that in this case the voltage is the same across the various

elements that are in parallel, but the several currents now add

vectorially to give the total current. The equations of sections 27-3,

27-4, and 27-5 still hold for the respective portions of the circuit.

If an inductance and a capacitance are in parallel and the fre-

quency is such that XL X
(:
we say we have a case of anti-

resonance. This is often referred to as a "tank circuit." The com-

bination presents a high impedance at this particular frequency.

27-14. Illustrative Problem. Find the power consumed in the circuit

of section 27-9.

Solution: We may do this in either of two ways. Since no power is

consumed in either a pure inductance or a pure capacitance, it is only

necessary to use the relation P = I2R for the resistance. Thus

p = (7.99)2(10) = 638 watts

It is also possible to use the relation P = EIcosO. In this case cos0 is

cos 47.9 degrees which is 0.670. Thus

P = (120)(7.99)(0.670)

or 642 watts which checks 638 watts to the degree of precision to which

we are working.

SUMMARY OF CHAPTER 27

Technical Terms Defined

Root-Mean-Square Value. The square root of the average of the squared
instantaneous values of the current or voltage. For a sine wave, it is

0.707 of the maximum value. It is the current (or voltage) read by an

alternating current ammeter (or voltmeter).

Inductive Reactance. The ratio of the root-mean-square voltage to the

root-mean-square current in a pure inductance measured, in ohms* It is>

equal to the product of 2?r by the frequency by the inductance.

Capacitive Reactance. The ratio of the r.m.s. voltage to the r.m.s. cur-

rent in a pure capacitance. Measured in ohms. It is equal to the recipro-

cal of the product of 2?r by the frequency by the capacitance in farads.

Reactance. Inductive reactance, minus capacitive reactance. Measured,
in ohms.
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Impedance. The ratio between the r.m.s. voltage and the r.m.s. current

in a circuit containing resistance, inductance, and capacitance. Meas-
ured in ohms. Is equal to the square root of resistance squared plus
reactance squared.

Phase Angle. Angle between voltage and current on a rotating vector

diagram.

Resonance. The condition of an alternating current circuit when the

capacitive reactance is equal to the inductive reactance.

Power Factor. The ratio between the power and the product of r.m.s.

voltage by r.m.s. current. It is the cosine of the phase angle.

PROBLEMS

27-1. What is the current through a resistance of 10 ohms, an induct-

ance of 7 henries, and a capacitance of 1 microfarad when connected in

series on a 115-volt line at 60 cycles? How much is the current out of

phase with the voltage?

27-2. If one ampere, 60 cycles is flowing through the circuit of the

preceding problem, find the a.c. voltage across each part of the circuit as

well as the voltage across the entire circuit.

27-3. Solve problem 27-2 for 120 cycles instead of 60 cycles.

27-4. At what frequency will an inductance of 5 henries and a capaci-
tance of 2 microfarads be in resonance?

27-5. A 110-volt a.c. line sends a current of 5.50 amperes through a

series circuit the resistance of which is 17 ohms. Compute the impedance
of the line, also the power factor.

27-6. A watt meter indicates that the input to a motor is 1,900 watts
when connected to a 115-volt line. The ammeter shows that a current

of 20 amperes is flowing. What is the power factor, the resistance, and the

reactance?

27-7. When a coil is connected with a 120-volt d.c. line, 12 amperes
flow through the coil. But when it is connected with a 60-cycle line of

the same voltage, only two thirds of the original current flows. Calculate

(1) the resistance of the coil, (2) its reactance, and (3) the capacitance
needed to increase the current to its original value.



CHAPTER 28

Radio; Radar

28-1. Speed of Transmission of a Telephone Message Versus

Speed of Sound. Sound travels in air at the speed of about

1,100 feet per second. But a man in Boston can carry on a telephone
conversation with a friend in California and perceive no delay due
to distance in the replies to his questions. If the telephone line were

long enough to go around the world, there would still be a delay of

less than a second in the transmission of a message. In the tele-

phone, the sound at the transmitter makes a diaphragm vibrate;
these vibrations modify the resistance of an electric circuit; the

consequent variations in the direct electric current make an electro-

magnet vary in strength in the receiver at the other end of the line;
this in turn sets up vibrations in a disk, and consequently in the

adjacent air, closely similar to those in the transmitter. Thus, when
one listens at the telephone, he ordinarily hears the words slightly
sooner than someone in the same room with the speaker who is

dependent on the speed of sound waves in air.

28-2. Electromagnetic Waves. When the current is turned
on in an electromagnet, the magnetic field thus created theoretically
extends to an infinite distance, but it is not all created at the same
instant. It takes 1/60 of a second to establish the magnetic field

260
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3,100 miles away, and one whole second for the effect to reach a

point 186,000 miles from the electromagnet. If the current is con-

tinually reversed in the electromagnet, as happens when an alter-

nating current is used, then the magnetic field in the surrounding

space is also subject to reversals. In the case of a 60-cycle alternating

current, there will be points in space 3,100 miles apart, where the

magnetic fields are in the same direction at the same time; thus we
can say that electromagnetic waves are created by the alternating

electromagnet, with a "wave length" of 3,100 miles (or 5,000 kilo-

meters). If the frequency were 60 kilocycles per second (60,000

cycles per second), the resulting "wave length" would be five kilo-

meters (5,000 meters). The equation is (see section 16-4)

n\ = V

There is very close connection between these alternating electro-

magnetic fields and light waves, enough to warrant us in including
in the same category of "electromagnetic radiation," radio waves,

infrared, ordinary, and ultraviolet light, X rays, gamma rays, and

secondary cosmic rays which result from charged particles entering

our atmosphere at enormous speeds from outer space.

28-3. Four Reasons Why Radio at One Time Seemed
Impossible. For a long time, it was supposed that the varying

magnetic fields thus produced by oscillating currents would be too

feeble to be detected at distances more than a few feet from the

source. A second difficulty lay in the fact that, in order to radiate

a reasonable fraction of the total power, more rapid oscillations

were required than could be produced by mechanical means. The
third problem was how to modify these waves, assuming they could

be produced, so as to reproduce music and voices. Fourth, the

details of a telephone receiver are such that the rapid alternations of

the radio wave will produce in it an average effect of zero; the

receiver, however, responds to a varying direct current, so that some

device is necessary to rectify the alternating impulses. It is a re-

markable fact that the solution of all four of these difficulties came
with the invention of a single device, the radio tube. The four

applications of it just suggested will be discussed separately under

the headings amplification, oscillation, modulation, and rectification.

28-4. Amplification By Means of the Radio Tube. The
radio tube (see schematic representation in figure 28-1) consists

essentially of an evacuated glass tube with wires sealed in, con-

nected to a filament, a grid, and a plate within the tube. The termi-
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nals of the filament are connected to a low voltage from a battery
or transformer which causes a current called the filament current to

heat the filament so that it glows. When a metallic wire is heated,

free electrons are evaporated out of the wire and hover around in

the space just outside of the wire. If now, a large positive voltage is

applied to the plate, it will attract the negative electrons,

resulting in a flow of electrons from the filament to the

plate, called the plate current. The plate current may be

controlled in three ways: (1) by changing the filament

current, (2) by changing the positive voltage on the

plate, and (3) by varying the voltage on the grid,

which lies between the filament and the plate. If the

grid is made negative, it repels the electrons which are

trying to pass from the filament to the plate, and thus

decreases the plate current. If the grid is made positive,

it increases the flow. A slight change in the grid voltage
has the same effect as a very large change in the plate

,, Tr r - i i - , - - ^ i Al_ Figure 28-1.
voltage. If a fairly large resistance is inserted into the

plate circuit, the IR drop across it is a reasonably large

fraction of the plate voltage. If several tubes are used in such a way
that the IR drop of each plate resistor is applied to the grid of the

next tube, an extremely small variation in voltage in the first grid

produces a large effect on the plate voltage of the last tube. We say
in this case that we have employed several stages of amplification.

Thus, an extremely small impulse at the microphone may be am-

plified to several hundred kilowatts at the antennae; also at the

receiving end, a signal broadcast thousands of miles away may be

picked up and amplified enough to be heard for several blocks.

28-5. Oscillation Produced By the Radio Tube. A high

frequency oscillatory current may be created by means of batteries,

a radio tube, a condenser, and two inductances. In figure 28-2, the

A-battery serves to heat the filament. The filament, grid, and plate

are all inclosed in one glass tube as in figure 28-1. The .S-battery

through LP charges the plate positively. As the plate current builds

up (in spite of the negative charges on the grid furnished by the

C-battery) the increasing magnetic field in LP induces a voltage
in LG which makes the grid increasingly negative. As stated in the

preceding section, this has the effect of decreasing the plate current.

As the plate current shrinks, the decreasing magnetic field in LP in-

duces a voltage in LG which this time makes the grid less negative,
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which in turn increases the plate current. The cycle now repeats

itself again and again, and the oscillations continue as long as the

circuit is kept closed and the batteries

hold out. The frequency, n, of the oscil-

lations can easily be controlled since it

depends on the capacitance, C, of the

condenser and the inductance LP . If n
is in cycles per second, LP in henries,

and C in farads, the equation (see sec-

tion 27-10) is

1
n

Frequencies from one per second to

60,000,000 per second may be obtained

in this way. Much higher frequencies

may be obtained efficiently by means
of the modern "cavity magnetron."

28-6. Illustrative Problems. (1) Find
the frequency at which a condenser con-

sisting of a glass plate 0.3 cm. thick with

sheets of aluminum foil on each side of the

plate, of area 16 square centimeters, and an
inductance made up of a coil of 1,000 turns of wire on a core of permeability

2,000, cross-sectional area of 5 cm. 2
,
and length 20 cm., will oscillate when

connected into a circuit with a suitable means of excitation.

Solution: Using the equation of section 23-6, and assuming the dielec-

tric constant, c, of glass to be 8, we have A = 0.0016w2
,
ke
= 9 X 109

,

d = 0.003 meters, and

Figure 28-2.

(8)(0.0016)

4(3.14)(9)(10
9
)(0.003)

= 3.77 X farads

Using the last equation of section 26- 15, we have n = 1,000, ,4 = O.OOOSw3

2,000, km = 107
,

/ = 0.20 meters, and

, _ 4(3.14)(1,000)2(0.0005)(2,000) _L "
(100(0.20)

~ 6> lenries

Now using the equation of section 27-10, with L and C as just computed,

n = 1 = 10,350 oscillations per second
W(6.28)(3.77)(10-U)

This would ordinarily be expressed as 10.35 kilocycles.
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(2) If a high rate of oscillation is desired, both the inductance and the

capacitance must be as small as possible. Assuming that the inductance, Lp,
in figure 28-2 is two microhenries,
find the value of the capacitance,

C, so thaj the frequency will be

60 megacycles.
Solution: In the equation of

section 28-5, n = 60,000,000 and
LP = 0.000002 henries. Thus we
have

1

2*V(().()(XX)()2)C
f

B is:
60,000,000 =

Solving, we obtain C= 3.52X 1(H2

farads. This would commonly be

expressed as 3.52 micromicro-

farads.

28-7. Modulation Pro-
duced by the Radio Tube.

Figure 28-3 illustrates one

method of arranging a circuit

so that the sound vibrations at

the microphone, Af, can be

made to modify the amplitude of the radio wave. First consider the

original radio wave shown in figure 28-4, assuming silence at M.
After a steady state is established, the situation is as follows:

between the antenna and the ground there is a capacitance, CAJ (not

represented in figure 28-3) which, together with the antenna in-

ductance, LAJ determines the frequency of the tube oscillations and

consequently the frequency of the emitted "carrier wave."

Figure 28-3.

Figure 28-4.

An induced voltage in LA is caused by the transformer effect

from LP and in turn induces a voltage in LG ,
which by means of

the grid controls the plate current in the tube and thus maintains

the oscillations in LP as depicted in figure 28-4, all at the expense
of the ^-battery. If, now, a sound wave of the form shown in
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figure 28-5 is created at the microphone, fluctuations will be in-

troduced in the resistance of the microphone circuit, and the micro-

phone current will vary. The transformer action from LI to Z,2 will

Figure 28-5.

Figure 28-6.

Figure 28-7.

superimpose on the grid current the form of the sound wave, and

the result of the modification, or "modulation" as it is called, will

be the wave shown in figure 28-6, which represents the final shape
of the radio wave broadcast at the antenna. Tf the same sound

wave were sent out by another station with a greater wave length,

it would appear as in figure 28-7.

28-8. Rectification Produced by the Radio Tube. We
have described the method of producing oscillations of sufficiently

high frequency to broadcast efficiently; the method of controlling

(modulating) the amplitude of these oscillations so as to represent
music and speech; and the process of amplifying the signals, both

at the sending and at the receiving end. We know that electromag-
netic radiation represents a varying magnetic field and will therefore

produce an alternating voltage in any conductor it encounters,

such as the receiving antenna.

It now remains to show how the alternating currents due to

these alternating voltages may be rectified so as to be detected by
a telephone receiver, an instrument which responds not to alter-

nating but to a fluctuating direct current. Figure 28-8 shows a
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simple receiving circuit, with the tube used now as a detector, or

rectifier. It is to be understood that the plate, grid, and filament

are all contained in the tube as in the previous figures. We have

seen that heating the filament will evaporate out electrons; the plate,

however, is not heated and hence cannot be made to serve as a

source of electrons. Hence, if an effort is made to reverse the direc-

tion of the current, after sweeping all the electrons in the tube back

into the filament, the action ceases for lack of electrons, that is, the

current becomes zero. We thus have in the radio tube a device

which will permit a current to pass in one direction but not in the

other. Such an apparatus is said to "rectify
"

the alternating
current. If, therefore, the telephone receiver is placed in the plate

circuit, we shall obtain a reproduction of the original sound waves

originating at the microphone of the sending apparatus. It will be

noticed that in figure 28-8 there is an A-battery to heat the filament,

a .6-battery to make the plate positive, but no C-battery to give
the "negative bias" to the grid necessary to control the plate current

as described in section 28-4. The operation of the circuit in figure

28-8 may be described as follows: an alternating induced electro-

motive force is set up in the antenna with the frequency of the

broadcasting station. By varying the capacitance of the condenser,

represented with the arrow, the circuit may be
"tuned" to corre-

spond to the frequency of the broadcasting station, since the re-

lations involved are those of the equation in section 28-5. Until

this is done, the circuit will not oscillate at the required frequency.

Figure 28-8.

If the connection described in figure 28-8 as a "grid leak" were

omitted, the grid would be connected with the rest of the ap-
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paratus only through the grid condenser, and would be described

as "floating." Under these conditions, electrons that happen to

land on the grid on their way from the filament to the plate would

have no way of escaping. Thus the grid would accumulate enough
of a negative bias to cut off entirely the flow of electrons through
the tube. The grid leak represents a resistance just large enough,

say 3,000,000 ohms, so that sufficient of these electrons have a

chance to escape through it from the grid to maintain the correct

bias for proper operation of the circuit. The fluctuations in the

voltage of the grid due to the incoming radiation control the fluc-

tuations in the plate current which are detected in the telephone

receiver, or which are amplified so as to operate a loud speaker.

28-9. Alternating Current Radio Sets. It has been simpler

throughout this discussion to speak of A-, B-, and C-batteries,

which indeed are used in sets where no electrical power is available.

However, it is possible now to use 110-volt electric power as the

source of all the voltage required. If this is direct

current, suitable resistances will make the cor-
,

rect voltages available at the proper points.
*'

;

^
Radio sets are even designed to utilize alter-

nating current power. Alternating current will

heat the filament as well as direct current. In

the portions of the circuit where we desire direct

current, it may be obtained from alternating

r
,

,

current, since radio tubes may be used as
(^

. J
rectifiers. Thus transformers almost completely

*
L

replace batteries in the modern electric radio.

28-10. Electronics. During recent years, there has grown up
an enormous industry now comparable in size with the automobile

industry which is based on multifarious uses of radio tubes. This

new science is called electronics; there is at present no apparent
limit to its future growth and expansion. Effects which have been

known for many years, but which seemed too feeble for practical

use, may now be utilized freely through the magic of the amplifying

properties of radio tubes. Thus, light-sensitive photoelectric cells

may be set to work in talking motion pictures, automatic door

openers, burglar alarms, controls for automatic machinery, tele-

vision, and thousands of other appliances. "Geiger counters"

may be made so sensitive and equipped with so many stages of am-

plification that when a single electron enters an ionization chamber,
a click of any degree of loudness may be produced.
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28-11. Radar. Thousands of man-years during World War II

went into the development of a system for radio direction finding

and ranging now expressed by the coined word radar. The principle

dates back to the bat, which while flying emits a series of squeaks
both high pitched and supersonic (above the audible range) and

becomes aware of his surroundings by the way these sounds are

reflected back to him. Figure 28-9 is an example of the block-

diagram in electronics and serves to show the fundamental principles

of radar. Each rectangle represents a complicated set of electrical

connections. We begin with the modulator, the function of which

Figure 28-9.

is to turn on the oscillator for about a microsecond (a millionth of

a second), turn it off abruptly, and wait a millisecond (a thousandth

of a second) or so until time to turn it on again. The job of the radio-

frequency oscillator is to deliver at the rate of millions of watts

electromagnetic radiation of about v3,000 megacycles (wave length
0.1 meter) to the antenna. Prior to the development of the so-called

"cavity magnetron/' obtaining this amount of power at this fre-

quency was a sheer impossibility. The antenna must serve for both

sending and receiving purposes. It must be highly directional as

well as capable of more or less rotation in order to "scan" the re-

flecting object. Its physical dimensions must be large in relation

to the wave lengths utilized.

After the radiation has been reflected back from the object of

interest, the task is to receive the impulse and, by the superhetero-

dyne principle of generating a local oscillation which beats with the

incoming signal, prepare an intermediate frequency (15 megacycles
or so) signal for the indicator. It is important that the delicate re-

ceiver be turned off while the violent bursts of energy are being
emitted by the oscillator, then turned on instantly afterward to

receive the echo from an object sometimes only a few yards away.
The indicator is usually a cathode-ray oscilloscope which contains

a fluorescent screen. A line, which is straight up to the point where
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the echo appears, is thrown on this screen. The position of the kink

in this straight line is a measure of the time consumed in the to-and-

fro trip of the radio signal. Another device called the plan position

indicator literally draws a map on a fluorescent screen of the region

being scanned.

28-12. Radar in War. Since radar impulses penetrate dark-

ness, fog, smoke, and rain, it may easily be seen how useful it was

in both defense and offense during World War II. Combined with

a device for distinguishing friend from foe, it enabled England to

survive the German air attacks; it won the war against the sub-

marines in the Atlantic; it enabled the Pacific fleet to sink Japanese

warships miles away at night; it vastly improved the performance
of antiaircraft guns; and it was an invaluable adjunct to the bomber.

The "combat information center," an enclosed room on the ship in

which the radar indicators were located, was a much more likely

place to find the commodore of the destroyer force than up on the

bridge with the captain.

28-13. Radar in Peace. Radar will likewise be useful in

both air and sea navigation and piloting in times of peace. Just as

a plane may be spotted from ground by radar, so ground or mountain

peak or skyscraper may be detected by radar from a plane. In-

directly, too, radar will have a great influence on peacetime elec-

tronic industry by reason of the vast amount of research that it has

already stimulated, and the large number of technicians trained in

the field of electronics during the war. Even in the field of purely
theoretical research, uses for radar will be found. When it was an-

nounced, early in 1946, that the moon had been picked up by radar,

it immediately became obvious that the Michelson-Morley experi-

ment of 1887, which ultimately resulted in the theory of relativity,

could now be repeated on a colossal scale, to say nothing of the

possibility of checking the dimensions of one of our convenient

astronomical yardsticks, the distance from earth to moon. It was

even of interest to know that a radar beam could penetrate those

layers of ions in the earth's upper atmosphere, called collectively

the ionosphere, from which low frequency radio waves are reflected

back to earth. This meant that from this point on, it was physi-

cally possible to direct a V-2 rocket to the moon by radio control.

Possibly, some day we shall have a photograph of that farther side

of the moon which man has never yet seen!
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SUMMARY OF CHAPTER 28

Technical Terms Defined

Electromagnetic Radiation. A term including radio, infrared, ordinary,
and ultraviolet light, X rays, gamma rays, and secondary cosmic rays,

all of which travel through space with the speed of 300,000,000 meters

per second.

Electronic Tube. A tube made of glass or metal, either exhausted or

filled with a gas at low pressure containing two or more electrodes.

Diodes, triodes, tetrodes, pentodes, and so on.

Amplification. A function of electronic tubes with three or more electrodes

which has the effect of permitting a very feeble voltage to direct the

flow of a comparatively large amount of energy.
Oscillation. A function of circuit containing one or more electronic tubes,

condensers, and inductances which results in the production of a wide

range of electric oscillations without involving any moving parts.

Modulation. The superposition of electrical oscillations of audio fre-

quencies upon carrier waves of radio frequencies.

Rectification. Conversion of an alternating electrical voltage or current

into one that is pulsating but unidirectional. This is accomplished by
an electrical valve which permits the flow of electrons in one direction

but not the other.

Electronics. The study of the behavior of electrons under various con-

ditions either in a vacuum or in a gas at low pressure.

Radar. A device for finding the direction and the distance of an object

by reflecting high frequency radiation from it.

PROBLEMS

28-1. What is the wave length corresponding to a frequency of 550

kilocycles?

28-2. What is the frequency of a short-wave radiation with a wave

length (1) of two meters; (2) of one centimeter?

28-3. Two flat metal discs, 20 centimeters in diameter and 0.5 centi-

meter apart, have a capacitance of 0.0000555 microfarad. Find the di-

electric constant of the intervening medium.

28-4. Find the capacitance of an air condenser, the plates of which

have an area of one square centimeter each and are separated by a distance

of one centimeter.

28-5. It is desired to design a step down transformer which will take

the place of the A -battery in an ax. radio set. Find two integers that will

represent the number of windings in the primary and secondary of a

transformer which will step the voltage down from 110 volts to 4.89 volts.

28-6. If, in the previous problem, the inductance of the primary is

two henries, find the inductance of the secondary.

28-7. In order to tune to a frequency of 550 kilocycles, assuming the

inductance to be fixed at 0.0485 millihenry, at what capacitance must
the dial be set?

28-8. If the oscillator of a radar delivers a million watts for a micro-

second, then rests for a millisecond, what is its average output?



CHAPTER 29

Photometry;

Reflection and Refraction of Light

29-1. Brief History of the Theory of Light. Christian

Huygens (1629-1695) and Isaac Newton (1642-1727) were con-

temporaries and both were familiar with the same experimental

data, yet Huygens argued strenuously for a wave theory of light

and Newton for a projectile theory. Newton won at the time, and

so great was his prestige that for a hundred years after his death,

physicists still held to his projectile theory of light. Largely through
the efforts of Fresnel (1788-1827), a brilliant young French physicist,

the wave theory was again enthroned and held undisputed sway until

1887. In the meantime, Maxwell (1831-1879) had shown that elec-

tromagnetic waves were of the same nature as light, but of longer

wave length. In 1887, the photoelectric effect was discovered by
Hertz (1857-1894), a physical fact which completely contradicted

the wave theory. In accordance with the photoelectric effect,

feeble light from a distant star will knock out what we now know to

be electrons from a sheet of zinc. With the same speed and wave

length, the most powerful electric arc available will expel more

electrons, but each electron will have the same kinetic energy as

those produced by the starlight. A discovery of Planck's, in 1900,

was also incompatible with the wave theory, yet for a period,

physicists used first one theory and then the other, whichever was

convenient for the purpose at hand.

29-2. The "Wave Mechanics" Theory of the Nature of Light. Light
is one more form of energy. It does not represent continuous energy, but

is made up of discrete portions called photons. This was Planck's contri-
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bution. Each photon is created as such by being flung off from an electron

or other atomic constituent while the latter is revising its status in the

atom. We describe the process by saying that the electron has dropped
from a certain energy level in the atom to a lower energy level, and that

the photon represents the energy lost by the electron. The process is also

reversible. But progress in explaining light and atomic structure seemed
to be blocked until a theory was adopted in 1925 to the effect that the be-

havior of both photons and electrons is indeterminate and subject only to

probability laws. This indeterminacy therefore appears to be a basic

assumption and is justified because the conclusions derived from the theory
check marvelously with experimental results. The probability functions

which describe the behavior of ultimate particles are factored into so-called

psi-functions (^-functions), and due to the fact that there is a strong re-

semblance between these mathematical functions and the equations that

represent physical waves, the theory is called wave mechanics, and we shall

call the functions psi-waves.

The only phase of the theory which interests us in this chapter is the

point of view that is now being adopted in regard to radiation, and more

particularly to that special type of radiation known as visible light. It is

convenient to speak of psi-waves as exerting a certain type of control over

photons. For example, if we find that the probability that a photon is at a

certain point is zero, it amounts to saying that we shall never find a photon
at that point. In field-free space, if such a place could exist anywhere in

the universe, a psi-function would be shaped like a transverse wave, and
would move through space with what we are used to calling "the speed of

light"; in fact, it will do very nearly this in space that is not quite free of

fields. By fields we mean not only magnetic fields, but electric and gravi-

tational as well. Psi-waves are found to obey a certain definite group of

mathematical laws. For example, they may be added together, so that it is

proper to speak of the "resultant" psi-wave. If the medium is not a perfect

vacuum, the velocities for different wave lengths are different, so that the

resultant psi-waves will travel at an apparent rate which is called the

group velocity. The most likely thing for a photon, once under the arch of

the resultant psi-wave, is to stay there and be carried along with the group

velocity of the waves. Thus the velocity of the photon may be very differ-

ent from the velocity of any of the component psi-waves.

Hence, from one point of view, we might as well continue to think of

light as a wave motion, since the position of the photon comes so near to

being described by these wave functions. But the waves themselves are

mathematical and not physical; they carry no energy. For example,

probability is a mathematical and not a physical quantity. As an alterna-

tive, in some quarters, the possibility is toyed with that psi-waves exist in

a multidimensional space, such that our three-dimensional space is. a

cross section of the whole. But even in this case we should be obliged to

classify the waves as mathematical and not physical. The wave patterns

may exist without any photons, but in this case we have no light, no

radiation. The modern theory of light is therefore a curious combination

of projectile and wave theory.
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29-3. Meaning of "Frequency" and "Wave Length" in

Photon Theory. Although physical light has now become an as-

semblage of photons, it is still possible to find an almost physical

meaning for the terms "frequency" and "wave length." The "fre-

quency" is now regarded as the energy of the photon divided by a

number, known as Planck's constant, represented by the letter h,

and equal numerically to 6.60 X 10~34
joule-seconds. That is

the energy of a photon = hn

Having determined the "frequency" by this method, we may also

think of it as the actual frequency of the psi-wave. Moreover, the

photon is thought of as having momentum ;
when the photon strikes

an object, it exerts a pressure on it. The "wave length," on the basis

of the new theory, is the quotient of h divided by the momentum of

the photon. This may also be thought of as the actual wave length

of the psi-wave. The product of the "frequency" by the "wave

length" is therefore equal to the energy of the photon divided by
its momentum, and also equal to the velocity of the psi-wave. We
shall continue therefore to use these two terms in the remainder of

the book, but to remind the student of their somewhat artificial

meaning in modern theory we shall inclose them in quotation marks.

29-4. Speed of Light. The speed of light in a vacuum, al-

though great (186,000 miles per second or 300,000,000 meters per

second, usually written 3X 108
m./sec.), has been measured by

several distinctly different methods with results that check very

closely. Photons of all energies, as well as their psi-waves, travel

with the same speed in a vacuum, but in other transparent sub-

stances, as has just been mentioned, the speed of the psi-waves
is less than the figure given above, and not only different in different

substances but, in a given transparent substance, different for dif-

ferent "wave lengths." The statements we are now making about

the psi-waves are the same as were formerly made about light itself.

29-5. Electromagnetic Radiation. Not all light is visible.

For this reason, the larger term, electromagnetic radiation, will be

used to include both visible and invisible photons together with

their psi-waves. The longest electromagnetic "waves" are those

used in radio broadcasting; their "wave lengths" are such as to be

expressed conveniently in meters. Their speed is that mentioned

in the previous paragraph. The shortest "waves" which can be

detected by electrical methods have a "wave length" of about 0.001
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meter (one millimeter). At this "wave length/
5

the same photons
can also be detected by sensitive thermometric devices such as

radiometers, radiomicrometers, or thermopiles which will detect a

rise in temperature of as little as a millionth of a degree Fahrenheit.

In fact, the tremendous bursts of short-wave radiation used in

radar may be felt distinctly as heat by intercepting the rays with

the hand. From a "wave length" of a millimeter down to that of

0.00079 millimeter (0.79 micron) the radiation is called infrared

light. In this region, photography becomes possible. At 0.79 mi-

cron, the photons just begin to become visible to us as red light.

As the "wave lengths" decrease still more, the colors change to

orange, yellow, green, blue, and violet; the extreme edge of the violet

represents about 0.39 micron (3,900 Angstroms) in "wave length."

Throughout the visible region, the radiation will still slightly raise

the temperature of whatever object it falls upon (conversion of

light energy into heat energy) so that the thermopile may be used;

moreover, photography is still an available experimental tool.
o

Below 3,900 Angstroms, light again becomes invisible, but can be

photographed more readily than ever, and can still be detected

by the thermopile. In this region, it is called ultraviolet light. A
third method of detecting the existence of ultraviolet light is to

make use of the fact that when it passes through air, the air be-

comes ionized, that is, the air becomes temporarily a conductor of

electricity. All "wave lengths" shorter than those we have just

described can be detected by both the photographic and the ioniza-

tion method. When the "wave lengths" become as short as about

50 Angstroms, the same radiation is referred to as short ultra-

violet "waves" or long X rays; it is also customary to refer to long

X rays as "soft" X-radiation, and as the "wave lengths" become

shorter, we speak of them as becoming "harder." The shortest X
rays (or Roentgen rays) have a "wave length" of about 0.05 Ang-
stroms (50 X-units); below that "wave length" we have gamma
rays (50 X-units to 5 X-units), which are given off by radioactive

materials. Still shorter "wave lengths" or higher "frequencies" are

to be found in the secondary cosmic radiation which is present in

the earth's upper atmosphere and to a somewhat lesser extent

at sea level.

There are no regions missing in this entire range from the

radio wave to the secondary cosmic ray; all are alike in nature

and all travel with the same speed in empty space.
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c . .. . ,. 3 X 108 m./sec.Since "wave length" = ^-^rr-6
"frequency"

, . ,,. ,, energy of photonand since "frequency" =
6J
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:
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n 6.60 X 10~34
joule-sec.
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.
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1.98 X 10~25 meter-joule"wave length" =-- J-
energy of photon

It is therefore possible to translate either "frequency" or "wave

length" directly into the energy of the accompanying photon.
Since we can make this transition at any time, we shall continue

to use the language of the wave theory and therefore avail ourselves

of all of its advantages. The only limitation is that we cannot com-

pute the energy of light as if it were a wave; the energy is ex-

pressible only in terms of photons.

29-6. Units of Length. It may be of interest to list in one

place the enormous range of units used by the physicist.

o

1,000 X-units = 1 Angstrom
o

1 1

10,000 Angstroms = 1 micron

1,000 microns = 1 millimeter

1,000 millimeters 1 meter

1,000 meters = 1 kilometer

300,000 kilometers 1 light-second

31,560,000 light-seconds = 1 light-year

3.258 light-years
= 1 parsec

1,000,000 parsecs = 1 megaparsec

3.08 X 1035 X-units = 1 megaparsec.

The number of light-seconds in a light-year is obtained by mul-

tiplying the number of days in a year by the number of seconds in

a day. The light-year is the distance light will travel in a year.

The present estimate of the radius of the universe is about 400

megaparsecs.

29-7. Photometry. As in the case of sound, it is also true of

light that the intensity is inversely proportional to the square of the

'distance from the source. See section 17-5. This fact furnishes the

basis of photometry, which is the determination of the relative

strengths of light sources. The amount of light falling on a surface

of area A square feet, coming from a source of C candlepower,
d feet from A y

the dimensions of both C and A being small com-
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pared with d, and the direction of d making an angle of i with the

normal to A (see figure 29-1), is given by the following equation

T CA
L = jr COS I

a2

See appendix 6 for a discussion of the cosine. The amount of light, L,
in this equation comes out in lumens, which may be considered as

defined by the equation. The angle i is called the angle of incidence]

it will be noticed that when the light falls directly upon the surface

so that this angle is zero, cos i will be

unity. A could have been expressed
in square meters, in which case d

would be in meters, the other units

remaining the same.

The definition of the lumen just

referred to, when put into words, is

as follows: the lumen is the amount
of light which, coming from a onc-

candlepower source of small di-

mensions, will fall upon unit area,

unit distance from the source, with

zero angle of incidence. If the area

is curved so that i is zero at every point, the area need not be small.

Illumination is the amount of light falling upon unit area, and

is measured in lumens per square foot, or lumens per square meter.

If we let I stand for illumination, then / = L/A ;
therefore

Figure 29-1.

and we shall find that in many cases the conditions are so arranged
that the light falls squarely upon the illuminated surface, so that i is

zero and cos i is one. Unfortunately, it is also customary to use the

illogical units foot-candle and meter-candle as units of illumination.

The foot-candle is the same as the lumen per square foot, and the

meter-candle the same as lumens per square meter. Throughout

physics, we have been able to predict a new unit by noting the

algebraic processes that led to it. Thus, feet divided by seconds

give feet/second and feet multiplied by pounds give foot-pounds.

But here candles divided by feet squared give unexpectedly foot-

candles! But fortunately there are practically no other cases of

this type.
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In photometry, it is often the candlepower of the source which

it is desired to measure. Suppose, for example, that we have two

electric light bulbs, the candlepower of one known, and of the other

unknown. The procedure would be to mount the two bulbs at op-

posite ends of a three-meter bench and to place a screen at such a

point between them as to receive equal illumination from each bulb.

Various devices are employed for determining when the two illumi-

nations are equal, the simplest being the so-called grease-spot

photometer, the essential feature of which is a sheet of paper con-

taining a translucent grease-spot. If the illumination on the rear

of the screen is greater than that on the front, then the grease-spot

appears brighter than its surroundings, and if less, vice versa. Two
mirrors so placed as to enable the observer to see both sides of the

screen at once help in judging the equality of the illumination.

Since i is zero in each case, one illumination, /, is C/d
2 and the

other, /', is C/d'\ and when / = I
1

</
2

~~
d'*

29-8. Illustrative Problems. (1) A sheet of paper, 8.5 by 11 inches,

lies on a table which is illuminated by a 100-candlepower lamp on the

ceiling, six feet above the table top and eight feet to one side. How many
lumens does the sheet receive, and what is its illumination in foot-candles?

From figure 29-2 we sec that cos i is 0.6. We have therefore C = 100,

Figure 29-2.

A = 0.65 square foot, and d = 10 feet. Thus L = (100) (0.65) (0.6)/100
which gives us L = 0.390 lumen. The illumination is OJ90 lumen/0.65
foot2 or 0.6 lumen per square foot which is the same as 0.6 foot-candle.

The illumination may also be obtained directly from the original data from

the formula C cos i/rf
2

; that is, / = (100)(0.6)/100; or 0.6 foot-candle.

This would be considered very poor illumination; about five foot-candles

is considered a minimum for ordinary reading.
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(2) A certain lamp has been certified by the Bureau of Standards as

giving 25 candles. When this lamp is placed at one end of a three-meter

optical bench and an electric lamp of unknown candlepower at the other

end, it is found that the photometer must be placed one meter from the

standard lamp to make the illumination equal. Find the unknown candle-

power. One illumination is 25/1
2 and the other is C/22

. Setting these

equal, we have 25 = C/4, or C = 100 candles.

29-9. Reflection of Light. If light strikes an optically smooth

surface, the reflected light follows the law enunciated in section 16-5

(see also figure 16-6). In figure 29-3,

the angle of incidence is i and the angle
of reflection is r\ the law just referred

to simply equates i to r. On a surface

not optically smooth, such as a sheet

of paper, the light would be reflected

in all directions; this we call diffuse

reflection. It is this property of diffuse

reflection that enables us to see the

objects about us. If we could make a

perfect mirror that would reflect 100

per cent of the light incident upon it, we should be able to see the

objects reflected in it, but we should be unable to see the mirror

itself. A chemically deposited silver surface will reflect about 92

per cent of the incident light.

29-10. Images. The eye
is accustomed to assume that

the light entering ithasfollowed

a straight line from its start-

ing point. For example, in

figure 29-4, the eye assumes

that the light entering it comes

from the point / rather than

the point 0. It sees an image

just as far back of the mirror

as the object, 0, is in front of

the mirror. As a matter of fact,

however, there is nothing behind the mirror which the naked eye can

see from this point, so that we refer to this type of image as a virtual

image rather than a real image. On the other hand, if we should

focus the rays of the sun by means of a concave mirror, such as the

parabolic mirror in figure 29-5, upon the head of a match, and thus

start it blazing, we should be entitled to say that the concave mirror

Figure 29-4.
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had formed a real image at the head of the match (point F in figure

29-5). We can make the general statement that virtual images are

always behind a mirror, and real images always in front. We shall

see that the reverse is true of lenses.

29-11. Curved Mirrors. The only

type of curved mirror of practical im-

portance, not counting freak mirrors at

amusement parks, is parabolic. A para-

bolic mirror (figure 29-5) has the prop-

erty of reflecting a group of parallel rays

through a single point called the focus.

The largest telescopes are constructed

on this principle. Also, if a source of

light is placed at the point F, the rays,

after striking the mirror, will be reflected

along parallel lines. This is the principle

of the searchlight.

29-12. Refraction of Light. Refraction, while not very im-

portant in sound, has many applications in the case of light. In

section 16-6, the index of refraction is defined as the ratio of the

wave velocities in two mediums. Referring to figure 29-6, when i is

the angle of incidence and r is the angle of refraction, the index of

refraction being denoted by /*, we have

M = VI V" = sin i/sin r

This assumes that V is the velocity of light in the medium where

the angle is i and V" in the other medium. With reference to light,

the index of refraction of a sub-

stance is the ratio of the velocity of

light in a vacuum to the velocity

of light in that substance. Since

measurements of the velocity of

light are somewhat inconvenient,

it is very fortunate that we also

have the relationship between the

sines of the angles as well. In

figure 29-6, the ray CE may be

thought of as traveling in a vacuum, and the ray EH in some

other medium, such as glass. The reflected ray is omitted in figure

29-6 for the sake of simplicity. The velocity of light in air is nearly

(99.7 per cent) as great as in a vacuum, so that for our purposes

Figure 29-6.
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(slide-rule accuracy) we need not consider our substances sur-

rounded by a vacuum. If a ray of light passes through a plate of

glass with parallel surfaces (figure 29-7), it will come out parallel to

Figure 29-7.

the original ray, but displaced laterally. If, however, as in figure

29-8, the light is made to go through a glass prism, it will not come
out parallel to the incident direction. If the eye is placed at the

point H in figure 29-8, and looks in the direction of G, it will see

objects at the points F and /, but F and E will appear to be along
an extension of the line IIG. This fact is the basis for the construc-

tion of lenses, one of the important applications of the study of light.

29-13. Illustrative Problem. Consider the angles of the triangular

prism in figure 29-8 all to be 60 degrees, and the angle i 45 degrees. If the

index of refraction of the glass is 1.414, find angles r, r'
9
and i'.

Figure 29-8.

Using the equation n = sin i/sin r, where /z
= 1.414, and i = 45 de-

grees, we have 1.414 = 0.707/sin r. Solving, we have sin r = 0.500 and
r = 30 degrees by appendix 7. If r 30 degrees, then the ray makes an

angle of 60 degrees with the side of the prism and is therefore parallel with
the base of the prism. It immediately follows that i

1
is also 30 degrees. To
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find r', we substitute into the equation /z
= sin r'/sin i'. This gives us

1.414 = sin r'/0-500 from which we obtain sin r' = 0.707, and therefore

r
1 = 45 degrees.

SUMMARY OF CHAPTER 29

Technical Terms Defined

Light "Waves." Light "waves" obey all the properties of waves in general
with the exception of those having to do with energy. For example, the

energy of a sound wave or a water wave is proportional to the square of

the amplitude, whereas the energy of light is instead proportional to the

first power of the frequency. Removing the energy from a light wave

virtually removes it from physics and puts it into the field of mathe-

matics.

Photons. Light as a physical entity is now considered to consist of dis-

crete particles called photons. The energy of a photon of a given color

is proportional to the "frequency" of the accompanying "wave." In

free space photons travel with a speed of 300,000,000 meters per second.

Electromagnetic Radiation. Electromagnetic radiation is a term rather

more general than light. It includes radio, infrared, visible, and ultra-

violet light, as well as X rays, gamma rays, and secondary cosmic

radiation. The photons of these types of electromagnetic radiation in-

crease progressively in energy from radio to secondary cosmic radiation.

Photometry. The measurement of intensity of light sources.

Lumen. The amount of light which, coming from a one-candlepower
source of small dimensions, will fall upon a unit area curved so that the

angle of incidence is everywhere zero, unit distance from the source.

For example, if a one-candlepower source were placed at the center of a

hollow sphere, 47r lumens would be delivered to the inner surface of the

sphere.

Illumination. The number of lumens falling on unit area of a surface.

Foot-Candle. One foot-candle is the same as an illumination of one

lumen per square foot.

Meter-Candle. One meter-candle is the same as an illumination of

one lumen per square meter.

Virtual Image. A point from which light appears to diverge after suffering

reflection or refraction.

Real Image. A point toward which light converges after suffering re-

flection or refraction.

Index of Refraction of Light. The ratio between the velocity of light in

vacuo and that in some other medium.

Law of Refraction. The index of refraction is the ratio between the sines

of the angles of incidence and refraction.
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PROBLEMS

29-1. How long does it take light to make the trip from the sun to the

earth, 92,000,000 miles? How long does it take for a radar beam to travel

from the earth to the moon, 240,000 miles? How long does it take a radio

wave to go around the earth once?

29-2. If the dimensions in figure 29-2 are changed from 6, 8, and 10 feet

to 12, 5, and 13 feet respectively, find how strong a lamp will be needed to

produce 5 foot-candles at the given point on the table.

29-3. Two electric lamps give 25 and 40 candlepower respectively.
If they are placed at opposite ends of a 3-meter optical bench, where must
a screen be placed between them to receive equal illumination from each?

29-4. Using the last equation of section 29-5 together with the table of

length units found in section 29-6, find the energies of photons corre-

sponding
to "wave lengths" of (1) 0.001 meter, (2) 0.79 micron, (3) 3,900

Angstroms, (4) 5 X-units.

29-5. Prove that if a candle could give off light uniformly in all direc-

tions, it would emit 4?r lumens.

29-6. How tall a mirror will be needed so that when placed vertically
it will show a six-foot man his full length?

29-7. From data in section 29-12, find the index of refraction of air.

29-8. In figure 29-9, assume that the index of refraction is 1.150, and
find the values of angles KCH and MDG. See appendix 7.

29-9. In the preceding problem, assume instead that the index of re-

fraction is 1.414 and recompute the values of the same two angles. See

appendix 7.

Figure 29-9.



CHAPTER 30

Lenses; Miscellaneous Properties

of Light

30-1. Lenses. We have seen that light rays, emerging from a

prism, are not parallel to those entering the prism. If we join to-

gether parts of several prisms, as in figure 30-1, we obtain a lens-

shaped figure. We should therefore also expect light to come out

of a lens in a direction different from that of

the incident ray. Lenses are classified as

converging and diverging. As in figure 29-8,

the rays are always bent toward the thicker

part of the prism or lens, so that when the

lens is thicker at the center than at the rim,

the rays are all bent toward the axis of the

lens, that is, they converge, whereas the rays

are bent away from the axis (diverge) when

the center is thinner than the rim. There are
Figure 30-1.

thus three types of converging lenses (figure 30-2). Converging lenses

are often called positive and diverging lenses negative lenses.

30-2. Formation of a Real Image by a Converging Lens.

In figure 30-4 we have a converging lens, and regardless of whether

the curvature of one side of the lens is the same as that of the other

side, there will be two points (F) called foci (the singular is focus)

at equal distances from the center of the lens. If light enters the

283
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lens in a direction parallel to the axis of the lens, it will, after passing

through the lens, go through a focus. It is also true that if a ray of

light passes through a focus before entering the lens, it will emerge

V7

Converging
or Positive Lenses

Figure 30-2.

Diverging
or

Negative
Leases

Figure 30-3.

in a direction parallel to the axis of the lens. But at the center of

the lens, the opposite sides of the lens are so nearly parallel to each

other that a ray passing through the center of the lens will come out

in a direction parallel to the incident ray, but displaced laterally a

little, as in figure 29-7. Let O'O in figure 30-4 be called the object.

Figure 30-4.

and consider a group of rays going out in all directions from the

point toward the lens. Three of these rays are shown in the figure,

the same three which have just been described. Tt will be seen that

these three rays meet again at the point 7. In fact, any ray that

enters the lens from the point will, after leaving the lens, pass

through the point 7. Similarly, any ray that enters the lens from

the point 0' will also pass through the point T'. We therefore speak
of 7' 7 as being the real image of the object O'O. It will be noticed

that 7'7 is inverted; real images are always inverted with respect
to the object. There are two ways in which the eye can see this

image. The normal eye is supposed to see things best when they
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are about ten inches from the eye; this is called the "distance of

distinct vision." Therefore, in figure 30-4, the eye could be placed
about ten inches beyond / to see the image. But this is not the usual

method. It is more customary to place a screen at 7 and view the

image by reflected light. Thus we are looking at a series of real

images on the moving picture screen; and the film must be run

through the machine upside down.

30-3. Algebraic Relationships. It is clear from figure 30-4

that the triangle O'OC is similar to the triangle 7'/C, therefore the

size of the image is to the size of the object as q is to p. p is called

the object distance (O'C in the diagram) and q the image distance

(CI
f
in the figure). That is

VI
O'O

q

P

Another relation that is approximately true for lenses is

=
P^ q f

where/ is the focal length of the lens (CF in the figure). All three

of these quantities are positive in figure 30-4. / is positive for any
lens that is thicker in the center than at the edges, that is, for con-

verging lenses;/ is likewise negative for diverging lenses. When q is

in its natural position (on the opposite side of the lens from the ob-

ject), it is positive; when it is on the same side as the object, q is

negative.

Figure 30-5.

30-4. Formation of Virtual Images. Figures 30-5 and 30-6

illustrate the formation of negative or virliial images with both con-

verging and diverging lenses. It will be noticed that in figure 30-6

the lens has no real focus, but that when the ray is parallel to the
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axis on one side of the lens, it diverges from the axis on the other

as if it had come from the virtual focus, F', on the first side. If, in

figure 30-5, the distance p were ten inches and the distance q were

of

tive focal
\ingkj

\

Figure 30-6.

minus thirty inches, the lens would be ideal for the so-called far-

sighted person whose distance of distinct vision is thirty inches.

He would be able to hold his book ten inches

away while what he saw would appear to be

thirty inches away. On the other hand, the

lens in figure 30-6 would be convenient for a

near-sighted person, whose distance of dis-

tinct vision is, say, four inches. In this case p
is ten inches and q is minus four inches. The

equations of section 30-3 are sometimes called

thin lens formulas because they ignore the fact that the lens actually
has a finite thickness instead of being infinitely thin. Likewise in

this illustration of the eye-glasses, the distance between the glasses
and the eye is ignored.

30-5. Illustrative Problem. The focal length of a converging lens is

30 inches. Ff an object 10 inches high is placed 50 inches from the lens,
find the size and position of the image.

In this case, / = 30 inches, p = 50 inches, and O'O = 10 inches. Sub-
situting in the equation I// = 1/p + 1/g, we have

J.-JL+L
30

"

50
^

q

Multiply both sides of the equation by 150g and get

5q = 3? + 150

Solving, q
= 75 inches, the image distance.

Substituting now in the equation, I1

1/O'O = q/p, gives us

ri 75

10
"

50

Therefore, /'/ = 15 inches, the height of the image.
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30-6. Dispersion by Refraction. In section 29-4 the state-

ment was made that although in a vacuum all "wave lengths" (still

having in mind the psi-waves) travel with the same speed, they not

only travel with less speed in a medium like glass, but each "wave

length," that is, each color travels with a speed of its own. We must

therefore think of figure 29-8 as representing a ray of some one color.

A ray of light is the path of a succession of photons as more or less

determined by the psi-waves. The psi-functions have about the

same degree of control over a photon as the banks of a brook have

over the course of a drop of water in the brook; they determine its

general path but not every last detail of its motion. If, on the other

hand, the original ray consisted of white light, which is a mixture of

all colors, each color would come out of the

prism in a different direction. It will be

noticed that since a given color represents a

given "wave length," it therefore also desig-

nates the energy of each photon in a ray of

that color. (See end of section 29-5.) The

direction of two of these rays can be seen in

figure 30-7. We refer to this splitting of white light into colors as

dispersion.

We should expect some color effect in a lens, but as a matter of

fact the color effect is not very great, especially in a thin lens. But
in a thick lens, or in a situation where precision is demanded, the

color effect, or chromatic aberration as it is called, is troublesome

enough so that it is customary to use two or more lenses together,

of different shapes and of different kinds of glass, so that the colors

produced by one lens will neutralize those produced by the other.

This is called an achromatic com-

bination of lenses; it is not unusual

for a good microscope to contain

over a dozen lenses. It is simpler,

however, to think of both telescopes

and microscopes as consisting of

two sets of lens; the first of these

sets, called the objective, forms a

real image (inverted) of the object,

and the second set, or eyepiece,

forms a virtual image of this real image.
30-7. Diffraction and Interference. Figure 30-8 contains

an illustration of both diffraction and interference of light. 5 is a

Figure 30-7.
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point source of light of some one color, say yellow. If 5 lies at the

focus of lens L, the rays will be parallel with one another emerging
from the lens. G represents a screen containing a series of parallel

slits, A, B y C, and so on. Each slit is narrow enough so that on the

other side we get complete diffraction, that is, the light goes in all

Figure 30-8.

directions from each of the points A, B, C, and so on. (See section

16-8). Now let us consider three rays, AE, BF, and C77, which

happen not only to be parallel with one another, but which make an

angle with the direction CA such that when the perpendicular BD
is dropped to the line AE, the distance AD comes out just one

"wave length." Let the angle ABD be called 6. CA represents a

"wave front" (see section 16-6) which has emerged from the lens Z,,

so that the vibrations at any given instant at A and B are alike.

If D is just one "wave length" from A, then at any given instant,

D is also in phase with A and B, so that BD may also be considered

a "wave-front", and likewise CMN. If the rays AE, BF, and CI1

now pass through the lens L', the photons constituting these rays
will converge at the point P, which is the focus of //. If L' happens
to be the crystalline lens of the eye, P is some point on the retina of

the eye and will receive photons, the energies of which are charac-

teristic of yellow light. The manner in which these psi-waves rein-

force one another serves as an excellent example of constructive

interference. If, however, the angle were slightly larger or smaller

than the one we have chosen, AD would be larger or smaller than

a "wave length"; no "wave fronts" would be formed for that par-
ticular color, therefore no photons of that energy would be guided
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in the new direction. This would be an example of destructive

interference.

30-8. Dispersion by Diffraction. If in figure 30-8 we had

started with white light instead of light of some one color, then no

matter what the angle ABD, there would always be some "wave

length" present equal to AD, and that color would be the one

brought to a focus at P. In other words, the eye, by looking in

different directions, would see different colors, a situation similar

to that of figure 30-7. The screen, G, of figure 30-8, containing a

set of equidistant parallel slits, is called a diffraction grating. One

way of making a diffraction grating is to rule scratches on a piece

of glass with a diamond point; 15,000 scratches to the inch is

common practice.

30-9. Measurement of "Wave Lengths." The apparatus
which is diagrammed in figure 30-8 consists of a turntable upon
which the grating is mounted, and two telescope tubes arranged to

rotate about a vertical axis which is also the axis of the turntable.

One telescope is called the collimator and contains the slit, 5, and

the collimuting lens, L. The other telescope, the observing telescope,

contains the lens, L1
.

The simplest way of using the instrument for the measurement

of "wave lengths" is to set the axis of the collimator at right angles

to the grating, as in figure 30-8, and then measure the angle be-

tween the normal to the grating and the observing telescope when
the latter is focused upon the desired spectrum line. We talk about

"spectrum lines" because what we see in the observing telescope

is a series of colored images of the slit, and the slit is a long narrow

opening shaped like a "line." Scales are provided for the accurate

measurement of the angular positions of the turntable and both

telescopes. The angle between the normal to the grating and the

observing telescope is equal to the angle 6. If we know how many
lines have been ruled to the inch in our grating, then we also know
AB. The "wave length," X, which is AD, is therefore given by the

equation, X = (AB) sin 6. It may readily be verified that all through
the discussion of figure 30-8 N\ could have been substituted

for X, where N is any integer. N is called the order of the spectrum.
The equation therefore becomes

= (AB)sm6

30-10. Illustrative Problem. A grating has 21,561 lines to the inch.

Find the necessary angle between the normal to the grating and the observing
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telescope, assuming the collimator to be normal to the grating, to get the

sodium D line, X = 5,890.2 A in the first order.

It will be convenient to find how many lines there are to the centimeter

since the "wave length" has been expressed in Angstroms, the customary
unit: 21,561/2.5400 = 8,488.6 lines per centimeter. The "wave length"

expressed in centimeters is 0.000058902 cm. Since we are in the first order,

N equals 1,00000. Substituting in the equation at the end of section 30-9

gives us

0.000058902 = (1/8488.6) (sin0)

Solving, we obtain sin 6 = 0.49999. Looking this up in a five-place table

of sines, we find that the sine of 2959' is 0.49975, and the sine of 300' is

0.50000. (The latter value may also be found in appendix 7). Our value

is so much closer to an even 30 degrees than it is to 2959', that we shall

submit 300'.0 as our result.

30-11. Spectra. We have now met two devices, different in

principle, capable of dispersing white light into its various con-

stituent colors : the prism and the grating. The array of colors pro-
duced is called a spectrum. A white-hot solid or white-hot liquid will

each produce a spectrum containing all the colors of the rainbow,
and one could not tell by examining the spectrum what substance

constituted the source of light. On the other hand, if it is a gas

emitting the light, a limited number of "wave lengths" will be

present in the spectrum with empty spaces between the spectral

lines. The arrangement of "wave lengths" in the spectrum is typical

of the gas emitting the spectrum so that the gas may be identified

by means of its spectrum. This process is called spectroscopic analysis.

30-12. Polarization of Light. The statement was made in

section 16-2 that the psi-waves of light are transverse waves, and

the reason for our thinking that the waves are transverse is that

they can be polarized (see section 16-10). When these psi-waves

pass through certain crystals, all vibrations are absorbed except
those parallel to some given plane. Tourmaline, for example, be-

haves in this way. By rotating the piece of tourmaline, the plane
of the emerging polarized waves is also rotated. It is possible, with

two pieces of tourmaline, to arrange them so that what light gets

through one of them also goes through the other. If, however, the

second piece of tourmaline is now rotated 90 degrees, the light that

passes through the first crystal will not be able to go through the

second. Solutions of certain carbon compounds, such as sugar, as

well as certain transparent solids under strain, such as celluloid, have

the property of rotating the plane of polarization. This fact is made
use of in the analysis of sugar solutions. The principle is also applied
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by making models of such things as dirigibles out of celluloid and

observing the effecton polarized lightwhen various stresses are applied.
A commercial material called Polaroid is now available; this has the

same properties as tourmaline. One of the many uses for a material

of this kind is in the headlights and windshields of automobiles to

prevent the glare experienced in night driving.

SUMMARY OF CHAPTER 30

Technical Terms Defined

Dispersion. The separation of the frequencies of white light into those

of the constituent colors. This is usually accomplished either by a

prism or a grating.

Diffraction. The spreading experienced by light after passing through a

small opening.

Interference. The combining of crests and troughs of one wave train

with those of another, which has the effect of neutralizing the wave
motion in some cases and intensifying it in others.

Grating. A piece of metal or glass ruled with many parallel lines, several

thousand to the inch, and used either to reflect or transmit light. Its

effect is to separate white light into its constituent colors.

Spectrum. An array of colored images of a slit, characteristic of the in-

candescent gas which is serving as source.

Polarization. The removal from a beam of transverse waves all except
those vibrating in planes parallel to a given plane.

PROBLEMS

30-1. A converging lens is being used in such a way that the object and

image are on the same side of the lens. (See figure 30-5). If the object is

ten and the image thirty inches from the lens, find the focal length.

30-2. The object is ten, and the image four inches from a diverging lens.

Find the focal length of the lens.

30-3. A picture on a lantern slide has dimensions of two by three inches.

Find the focal length of a lens which will project an image of this picture
two by three yards in size, on a screen thirty feet from the slide.

30-4. It is possible to observe the same object simultaneously with one

eye unaided and the other eye provided with a small telescope, and by
comparing the apparent sizes of the object, it is possible to determine the

magnification of the telescope. Give reasons why the same procedure could

or could not be employed successfully to obtain the magnification of a

single converging lens.

30-5. If a pin an inch long is placed three inches from a converging lens

with a focal length of four inches, find the position and size of the image.
Will the image be real or virtual? Where will the eye have to be to see

the image?
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30-6. Given a converging lens with the object at infinity, that is, an
infinite distance away, where is the image? Describe the successive posi-
tions of the image as the object is moved in toward the lens, finally arriving
at the lens.

30-7. Repeat problem 30-6, except that the converging lens is replaced

by a diverging lens.

30-8. The three principal methods of producing colored light from
white light are (1) passing the light through an object which is trans-

parent to certain colors and opaque to others, such as blue glass, (2) uti-

lizing refraction, as in the case of the prism, and (3) utilizing interference,
as in the case of the grating. Decide whether the following belong under
one or another of these three cases or under other cases not listed: (a) the

color of copper sulphate, which looks blue both by reflected and by trans-

mitted light, (1)) very thin gold leaf which looks yellowish by reflected

light and greenibh by transmitted light, (c) a rainbow, (d) the beveled

edge of a mirror, (e) a soap bubble, and (f) a thin film of oil on a puddle
of water.

30-9. It is desired to measure the "wave length" of one of the so-called

sodium D lines by using the second order spectrum produced by a trans-

mission grating ruled with 20,000 lines to the inch. The angle between the

normal to the grating and the observing telescope is 6812.4', the sine of

which is 0.92853. Find the "wave length." How many significant figures
is it proper to keep in your answer?



APPENDIX I

Common Physical Constants

and Conversion Factors

A physical constant consists of a number with or without (but

usually with) a more or less complicated unit. Some of the more
common physical constants used in this book are given here in

both English and metric units.

Normal height of barometer

Atmospheric pressure

Density of water

Specific gravity of water

Acceleration of gravity
IT

Heat of fusion of water

Heat of vaporization of water

Specific heat of water

Coefficients of linear expansion

Speed of sound

Speed of light, radio waves, etc.

Units

30 inches

14.7 Ib /in."

62.4 Ib./f t 3

100
32 2 ft./sec.

2

3.14

144 H.t.u./lb.

972 TU.u /Ib
100
See section 20-2

1,087 ft /sec

186,000 miles/sec.

Metric Unih

76 centimeters

1,033 grams/cm.2

1 00 gram/cm.8

100
9 80 m./sec.

2

3.14

80 Cal /kgm.
540 Cal./kgm.
100

331 meters/sec.
3 X 108 m./sec.

A conversion factor always consists of a number together with

a unit. Furthermore, the unit of a conversion factor always con-

sists of a numerator and a denominator, both of which represent

the same kind of physical quantity. All conversion factors may be

equated to unity; it is thus possible to multiply or divide any

physical quantity by a conversion factor without changing the

value of the original quantity. Consider the equation, 3 feet = 1

yard. As it stands it is correct; without the units it is, of course,

incorrect. Now divide both sides of the equation by the unit "yard."
The result is 3 feet/yard = 1. Unity on the right-hand side of the

equation is now a pure number, that is, it has no units, and

3 feet/yard is a conversion factor Try the effect of multiplying
4 yards by 3 feet/yard. The result is 12 feet; the yards cancel each
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other; and 12 feet is the same as 4 yards. Similarly the student

may obtain conversion factors from any of the following equations.
9.80 newtons

4.45 newtons

1 newton-mcter

1 erg
980 ergs

42,800 gm.-cm.

10,000,000 ergs

4,190 joules

0.252 Calories

3,600 joules

1,000 watt-hours

3,410 B.t.u.

0.746 kilowatt-hours

550 foot-pounds

3,600 hp.-scconds
0.738 foot-pounds
778 foot-pounds
980 ergs/second

10,000,000 ergs/second

1,000 watts

746 watts

550 ft.-lb./second

33,000 ft.-lb./niinute

96,500 coulombs

980 dynes
454 grams
2.20 pounds
32.2 pounds
60 seconds (")

60 minutes

57.3 degrees
90 degrees
360 degrees

2ir radians

1,000 X-units

10,000 Angstroms

1,000 microns

10 millimeters

100 centimeters

1,000 meters

300,000 kilometers

31,560,000 light-seconds
3.258 light-years

1,000,000 parsecs
2.54 centimeters

1 kilogram
1 pound

= 1 joule
= 1 dyne-centimeter

1 gram-centimeter
1 Calorie

= 1 joule = 1 watt-second

1 Calorie

= 1 British thermal unit (B.t.u.)

1 watt-hour
=s 1 kilowatt-hour (Kw.-hr.)
- 1 Kw.-hr.
= 1 horsepower-hour (hp.-hr.)
= 1 horsepower- second
- 1 hp.-hr.
= 1 joule
= 1 B.t.u.

= 1 gram-centimeter/second
= 1 watt = 1 joule/second
= 1 kilowatt
= 1 horsepower
= 1 horsepower
~ 1 horsepower
= 1 faraday
= 1 gram
= 1 pound
= 1 kilogram
= 1 slug
= 1 minute (')

= 1 degree ()
= 1 radian
= 1 quadrant
=* 1 revolution

~ 1 revolution

~ 1 Angstrom
= 1 micron
=* 1 millimeter
= 1 centimeter
= I meter
= 1 kilometer
= 1 light-second
= 1 light-year
= 1 parsec
= 1 megaparsec

1 inch



APPENDIX 2

Significant Figures and

Computation Rules

In general, a physical quantity involves both a number and a unit,

and must be thought of in nearly every case as either the direct or

the indirect result of a measurement. Thus, 3 meters is a physical

quantity where 3 is the number and meters is the unit. Moreover,
the physicist makes a distinction between 3 meters, 3.0 meters, and
3.00 meters. The first means that he has merely estimated the first

figure, 3, and has no idea whether the tenths figure is a 0, 1, or even

a 4. If he has any idea of what the next figure is, he puts it down,
even though it be a zero. Thus the last significant figure in the

statement of a physical quantity is understood to be the best

estimate for that position ;
the figures that precede it are known to

be exact. In the illustration just used, 3 meters is referred to as a

number of one significant figure and represents only an estimate,
whereas the 3.00 meters is said to have three significant figures, the

last of which is an estimate. In counting the number of significant

figures, the position of the decimal point is not considered. For in-

stance, 30.0 millimeters and 3.00 centimeters each have three sig-

nificant figures, and in fact represent the same measurement.

We can also have insignificant figures. When a figure can not

possibly be the result of measurement, or is merely used to occupy

space between the decimal point and the figures that are significant,

we say that it is insignificant. For instance, in the statement that

the population of the United States is 140,000,001, the last 1 is

insignificant (and therefore absurd) for the first reason, and several

of the zeros are insignificant for the second reason. Insignificant

zeros put in for the second reason are of course excusable and in

fact necessary. But zero is the only figure that can legitimately be

insignificant, and then only for the purpose of occupying space to

the decimal point. Thus, the 3.00 centimeters in the previous

paragraph may be expressed as 0.0300 meters and still have but

three significant figures, since the zero before the 3 merely occupies
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space between the decimal point and the first significant figure.

The zero in front of the decimal point is purely optional.

There are certain rules for the proper number of significant

figures to keep in a computation. If it is a matter of multiplication

or division, keep no more significant figures in the product or

quotient than in the numbers started with. And the numbers
started with should both have the same number of significant

figures in the first place. There is one exception to this rule. When
a number begins with the digit 1, it is customary to keep one more

significant figure than the above rule prescribes. This is because

of a practice that grew out of the structure of the slide rule. Num-
bers like 999 and 1,001 each represent measurements to the same

degree of precision, yet it requires one more digit in the second

case than in the first to express the quantity. Unless otherwise

specified, in solving problems in this book, we limit ourselves to

three significant figures, unless the number happens to begin with

a one, when we allow ourselves the luxury of four significant figures.

The only occasions when the decimal point influences the number of

significant figures to be used are in addition and subtraction. The
rule then is to round off the numbers to be added or subtracted so

that they have the same number of decimal places, and then keep
that number of decimal places in the answer. Thus in multiplica-

tion and division, it is the total number of significant figures that

interest us, regardless of the position of the decimal point, while in

addition and subtraction, it is the number of decimal figures that

are important, regardless of the total number of figures in the

number.

As an illustration, suppose it is required to add the following

distances: 5.01, 0.1429, 0.00737, 0.000927, all in centimeters, it

being understood as usual that the last digit in each number is

only an estimate.

Incorrect Correct

5.01 5.01

0.1429 0.14

0.00737 0.01

0.000927 0.00

5.161197 5.16

On account of the uncertainty of the hundredths places, it is under-

stood that it is equally reasonable that the sum should be 5.18 or

5.15 centimeters, and the string of digits, 1197, are absolutely

meaningless and out of place in the result.
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In rounding off a number, we increase the last digit retained by
one unit if the next digit (the first rejected digit) is more than a 5.

This accounts for the replacement of 0.00737 by 0.01 in the previous

paragraph. On the other hand, 0.1429 is replaced by 0.14. If we

drop a 5, the origin of which we know to be either slightly more or

slightly less than a 5, we know whether or not to increase the last

digit retained. If the figure rejected is exactly 5, we might as well

toss up a penny to decide whether to raise the previous digit by
one or to leave it as it is. Trained computers follow some rule in

this instance which will insure half of this type of 5's being treated

in each way in the long run. One such rule, for instance, is to do

whatever is necessary to leave the number even.

As another illustration of the computation rules, suppose that

it is desired to determine the area of a rectangle 12.343 meters long
and 3.47 meters wide. In the length we have an estimate to the

fifth figure, but in the width to the third only. A strict adherence

to the rules would require rounding off the first number to 12.3

meters; but, remembering the exception to the rule, since it begins

with a 1, we are allowed to keep four figures, namely, 12.34 meters.

The multiplication could be carried out by either of the following

two methods of "long multiplication":

3.47 3.47

12.34 12.34

347

694
1041

1388

42.8|198

The second is preferable because it gives us the most important

part of the product first, but both are open to a criticism which will

be obviated in the third section of the appendix. In the original

statement of the width, we are sure of the 3 and the 4, but the 7 is

only an estimate. Another estimate of the third digit might have

made it an 8. If we had multiplied 3.48 by 12.34 we should have

obtained 42.9432. Obviously, in the product we are sure only of

the 42 and the best estimate of the next figure is an 8 or possibly
a 9. But for all we know the area may be 42.6 or even 43.0 square
meters. If we follow the rules for significant figures to be re-

tained in a multiplication, we shall round off our answer to three

figures and have 42.8 square meters for our result, thus expressing
the value with two significant figures, the correctness of which we
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are sure, and a third significant figure, which represents the best

estimate for that position. This means that the figures to the right

of the vertical line are all superfluous; at best they influence merely
the uncertain 8.



APPENDIX 3

Abbreviated Multiplication

and Division

A series of multiplications and divisions that could be performed in

sixty seconds with the slide rule would require about three minutes

with logarithms (see appendix 8), five minutes by the abbreviated

methods described in this section, and seven minutes by ordinary

long multiplication and division. One does not always have a

logarithm table or slide rule conveniently at hand, whereas he can

always throw out the figures that play no part in the final result.

Consider these two modifications of the second multiplication in

appendix 2.

3.47 3.47

12.34 12.34

347 347

70 694
9 105

42.6 12

42.81

In the first modification, we multiply the 347 by 1 and put down 347.

We are now through with the 1 of the multiplier, also with the 7 of

the multiplicand, since the latter simply gives us digits from now
on to the right of the vertical line above. So cross out the 1 of the

multiplier, also the 7 of the multiplicand, but since the latter is

more than 5, increase the 4 by 1. Next we multiply the 35 by 2,

which gives us 70. We are now through with the 2 in the multiplier
and with the 5 in the multiplicand, therefore we cross them both out.

This time we do not increase the 3 by unity, since the 47 which has

been crossed out was less than 50. We now multiply 3 by 3 which

gives 9. We are not disturbed that the sum is 42.6 instead of 42.8

because the third figure is merely an estimate anyway. The second

method is the same as the first except that we do not begin crossing

out digits of the multiplicand quite so soon, thus the third figure

is more reliable. The result should, of course, be rounded off to

42.8 square meters.
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300 ABBREVIATED MULTIPLICATION AND DIVISION

Suppose now that it is desired to divide 42.8 by 12.34. Here

are two methods, the long division and the abbreviated division.

3.468 3.472

12.34J42.80
3702

12.34|42.80 000

3702

5 78

493

84

74

10

40

04

360

872

488

578
492

86

84_
2

In either case the result should be rounded off to 3.47. Again the

figures to the right of the vertical lines are superfluous. In the

right hand method, after the 3,702 has been subtracted from the

4,280, instead of bringing down a fictitious zero, we cross out the 4

of the divisor. Since 4 is less than 5 we do not increase the 3 by
unity. 123 goes into 578 four times. Four times 123 is 492. And so

forth. Each time, instead of bringing down a zero from the dividend,

we cross out a digit of the divisor. By so doing (1) it is no longer

necessary to handle so many insignificant figures, (2) the process
becomes more and more simple as it progresses, and (3) the third

advantage of the method is that when we get the proper number of

figures in our quotient we have to stop! There is no more divisor

left with which to continue. If we use a slide rule for multiplica-

tion and division, we shall also automatically obtain the correct

number of significant figures in our results, without recourse to a

set of regulations.



APPENDIX 4

Summary of Essentials of Algebra

This appendix naturally will not take the place of a course in algebra,
but will merely serve to emphasize the portion most important for

our purpose, namely, the handling of equations. The fundamental

fact is that if we start with an equation, which is a statement that

two things are equal to each other, then whatever we do to one side

of this equation we must also do to the other side of the equation.
The operations that we carry out most often on the two sides of the

equation are addition, subtraction (which is merely the addition

of a negative quantity), multiplication, division, squaring, and ex-

tracting the square root.

Addition and subtraction are represented by plus and minus

signs as in arithmetic. Thus

5+ 10 -2-7 = 6

If we add 7 to both sides of the equation we have 5+10 2 -7 +
7 = 6 + 7, or

5+ 10 -2 = 6 + 7

The result is simply to shift the 7 to the other side of the equation
and give it the opposite sign. This is called transposing the 7. With
letters instead of figures we have

x + a = b

Transposing the a we have
x = b a

Multiplication is represented by merely placing the quantities
next to each other, preferably surrounded by parentheses. Example:

(6) (7)
= 42; ab = c, or (a) (b)

=
c\ (a

-
b] c = d. The last is read:

the product of a b and c is equal to d. Division is represented by
making use of the fact that in a fraction the numerator is divided

by the denominator. Thus 42 divided by 21 would be written

42/21 = 2 or
|j
= 2

~3 is the same as ~
>
an<^ both are equal to 9. If we start with

xa = b
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302 SUMMARY OF ESSENTIALS OF ALGEBRA

and divide both sides by a, we shall have = -, which is the same
a a

x = b/a

x ~{~ a
Let us start with the equation =

fc,
and let the task be to

perform enough of the above operations on both sides of this equation
to result in leaving x alone on the left hand side. First multiply both

/y*
I /7

sides of the equation by c, giving c = be, or
o

x + a = be

Now transpose the a and get

x = be a

which is the required result.

The problem solved in the previous paragraph is known as

solving an equation for x. In this book, the equations are furnished

by the facts of physics. A large number of the problems amount

simply to furnishing numerical values for all but one of the quan-
tities in an equation and asking the student to solve for the un-

known quantity.
A proportionality constant is a number used to change a pro-

portion into an equation. Suppose A to be proportional to B.

For example, suppose that when A is 1, B is 3; when A is 2, B is 6;

when A is 5, B is 15; and so on. Instead of saying that A is pro-

portional to B
9
the situation could have been equally well expressed

by saying that A is equal to B times a constant. A = kB, the con-

stant, k, in this case being 1/3. This kind of a constant is called a

proportionality constant.

If C has the same ratio to D that A has to B, we say
((A is to B

as C is to Z>" and write it A:B =
C:Z), or better, A/B = C/D.

This is nothing more than the equating of the two fractions, A/B
and C/D. A and D are called the extremes of this proportion and
B and C the means. The product of the means of a proportion is

equal to the product of the extremes; that is, AD = BC.
The only case of factoring involved in this text is based on the

fact that

(x + y) (x
-

y) = & -
y*

This is read, the product of the sum of x and y by the difference of
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x and y is equal to the difference of the squares of x and y. This

may be checked with numerical values as follows

(7 + 5) (7
-

5) = 72 - 52 or (12) (2)
= 49 - 25 - 24

Another way of checking this is as follows

(7 + 5) (7)
_

(7 + 5) (5) 72 _ 52

or

(7) (7) + (5) (7)
-

(7) (5)
-

(5) (5)
= 72-52

If x is small compared with unity, then #2
,
r3

,
and so on, may be

neglected and we have the following approximate equation

(1 *)
n - 1 nx

where n may be either positive or negative, integral or fractional.

The formula for the solution of the quadratic equation
ax2 + bx + c = is

- b Vb2 - 4ac



APPENDIX 5

Geometrical Propositions

Essential to This Book

1. If one straight line intersects another, the opposite angles

(vertical angles) at the vertex are equal.

2. Given two angles; if the sides of one angle are parallel respec-

tively to the sides of the other angle, the two angles are equal or

supplementary.

3. Given two angles; if the sides of one angle are perpendicular

respectively to the sides of the other angle, the two angles are equal
or supplementary.

4. The sum of the three angles of a triangle equals 180 degrees.

5. The sum of the four angles of a quadrilateral equals 360

degrees.

6. Two triangles are equal if (1) the three sides of one are equal
to the three sides of the other, (2) if two sides and the included

angle of one are equal to two sides and the included angle of

the other, and (3) if two angles and the included side of one are equal
to two angles and the included side of the other.

7. Tf the angles of one triangle equal the angles of another

triangle, the corresponding sides are proportional.

8. In a parallelogram, the opposite sides are equal.

9. The sum of the squares of the two legs of a right triangle is

equal to the square of the hypotenuse.

10. An angle inscribed in a semicircle is a right angle.

11. The area of a triangle is half the base times the altitude.

12. The area of a parallelogram is the base times the altitude.

13. The area of a trapezoid is the average of the two bases

times the altitude.

14. The area of a circle is Trr
2 or 7r/)

2
/4.

15. The volume of a sphere is 47ir
3
/3 or 7rZ>

3

/6.
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APPENDIX 6

Definition of Sine and Cosine;

Sine Law, Cosine Law

The usual mathematical method of measuring an angle is to con-

struct an arc with center at the vertex
;
the angle (in radians) is then

equal to the ratio of the portion of the arc intercepted between the

sides of the angle to the radius of the arc. It is often more conven-

ient to obtain a measure of the angle in terms of ratios between

straight lines as follows.

From any point P in one side of an angle drop a perpendicularP@
to the other side OQ. This forms a right triangle two sides of which

are adjacent to the given angle. The shorter of these sides, O(),

divided by the longer, OP, is called the cosine of the angle a. The
value of the cosine determines the

angle and the value of the angle
determines the cosine. Since we

always divide the shorter by the

longer, the cosine of an angle is

always less than one. If the angle
is obtuse, the perpendicular will

land on a side of the angle produced
and the cosine is then considered

negative. The ratio between the

side PQ, opposite to the angle a, to

the hypotenuse OP, is called the

sine of the angle a. The sine also is

always less than one. The sine is

considered positive whether the

angle is acute or obtuse. We may
summarize these two statements by the equations

OQ= PQ=

Numerical values of these ratios will be given in the next appendix.

305



306 DEFINITION OF SINE AND COSINE; SINE LAW, COSINE LAW

In any triangle, ABC, where side a is opposite angle A, side 6 op-

posite angle J5, and side c opposite angle C, the following two re-

lations hold:

Sine law: (sin A)/a = (sin E)/b = (sin C)/c
Cosine law: 2 = $ + <? 2bc cos A

J2 = C2 + a2 _ 2ca cos B
C2 = a2 + tf - 2ab cos C



APPENDIX 7

Table of Sines and Cosines

sin sin 180 cos 90 cos 90 0.0000

sin 5 sin 175 cos 85 = cos 95 =- 0.0872

sin 10 sin 170 cos 80 cos 100 =* 0.1736

sin 15 =. sin 165 =* cos 75 =- cos 105 0.259

sin 20 - sin 160 = cos 70 =- cos 110 = 0.342

sin 25 sin 155 cos 65 = cos 115 =- 0.423

sin 30 = sin 150 = cos 60 = cos 120 = 0.500

sin 35 *= sin 145 = cos 55 =- cos 125 =* 0.574

sin 40 = sin 140 = cos 50 = cos 130 0.643

sin 45 = sin 135 = cos 45 = cos 135 = 0.707

sin 50 = sin 130 = cos 40 = cos 140 0.766

sin 55 = sin 125 = cos 35 cos 145 = 0.819

sin 60 - sin 120 - cos 30 - cos 150 = 0.866

sin 65 sin 115 cos 25 - - cos 155 - 0.906

sin 70 sin 110 cos 20 cos 160 = 0.940

sin 75 sin 105 cos 15 = cos 165 0.966

sin 80 sin 100 cos 10 = cos 170 0.985

sin 85 sin 95 - cos 5 - - cos 175 - 0.996

sin 90 - sin 90 - cos - - cos 180 - 1.000
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APPENDIX 8

Three-Place Logarithm Table

Logarithms are exponents of 10. For example, 100 = 102
,
there-

fore 2 is the logarithm of 100, written 2.000 = log 100. Also 3.000 =
log 1,000 and 4.000 = log 10,000. Numbers between integral

powers of 10 may be expressed as fractional exponents of 10. For

example, 102301 = 200, 102477 = 300, 10 1 - 301 =
20, and 10 301 = 2.

These relations may also be written log 200 = 2.301, log 300 =

2.477, log 20 = 1.301, and log 2 = 0.301. It will be observed that

in stating the value of the logarithm, the integral portion of the

logarithm (called the characteristic of the logarithm) is always one

less than the number of digits to the left of the decimal point in the

number itself. Thus it is not necessary to include the characteristic

in the logarithm tables, but only the mantissas or decimal portion
of the logarithm. Let us look in the table on page 309 in the row

numbered "8" under the column numbered "6" and find the man-
tissa 934. We could now write log 8,600 = 3.934, log 86 = 1.934,

log 8.6 = 0.934, log 0.86 - 9.934 - 10, log 0.086 = 8.934 - 10,

and so on. Similarly we may look up the logarithm of 8,700 and
obtain log 8,700 = 3.940. The logarithm of 8,650 is 3.937, just

halfway between 3.934 and 3.940. It is always possible to estimate

the values of logarithms between the ones in the table in this

manner; the process is called interpolation. The use of the loga-

rithms follows from the fact that (10
X

) (10
y
)
= 10x+y . That is,

when we multiply the numbers, we merely add the exponents.

Therefore log 2 + log 3 = log 6. Checking from the table, we find

0.301 + 0.477 = 0.778. Division is similarly converted into sub-

traction.

Let the student solve the following problem from the table

above and then check it with the work below.

(0.234) (1.478) (92.7) (0.0439) _
(0.567) (0.0872) (3.14) (15.79)

f
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310 THREE-PLACE LOGARITHM TABLE

Solution:

log 0.234 = 9.369 - 10 log 0.567 = 9.754 - 10

log 1.478 = 0.169 log 0.0872 = 8.941 - 10

log 92.7 = 1.967 log 3.14 = 0.497

log 0.0439 = 8.642 - 10 log 15.79 = 1.199

20.147 - 20 20.391 - 20

or 10.391 - 10

Subtracting
20.147 - 20

10.391 - 10

9.756 - 10

9.756 10, from the table, is the logarithm of 0.570. The slide

rule gives for this problem the result, 0.574. The third place is

necessarily uncertain when a three-place table is used. The value

20.391 - 20 was changed to 10.391 10 so that after subtracting,
the remainder would be represented by a positive number minus
some multiple of 10. This is convenient because the mantissas in

the table are all positive.



APPENDIX 9

The Two Fundamental Theories of Physics
i

The same element in our make-up that is responsible for our en-

joyment of detective stories, puzzles, and mysteries, results in an

interest in physical theories. As examples of some of these enigmas
we could ask, for example, in what respects is the space surrounding
a magnet different from that surrounding an unmagnetized bar of

iron, or the space surrounding an electric current unlike the same

space with the current turned off. And why does light have all the

properties of a wave in a rigid solid along with several other prop-
erties that no wave could possibly have? Why does the planet

Mercury have many tons more mass when traveling rapidly through
the part of its orbit nearest the sun than while moving leisurely

through the more distant parts? Why do the same physical laws,

which work so well for the engineer and the astronomer, fail utterly

to give correct results within the atom? How is it that physical

phenomena on a very small scale obey nothing but probability

laws, while on a larger scale, everything seems quite determinate

and predictable? The answers to these and similar questions lie in

the region of physical theory. Most of the present-day physical

theory is embodied in two well-known theories, one propounded

by Einstein in 1916, called "general relativity theory" and the other

developed by several men practically simultaneously in 1925 and

1926 and called "quantum mechanics."

General relativity theory is a new type of geometry not confined

to three dimensions, and based on a set of axioms and postulates

a little different from those of Euclid. The quantities in this geom-

etry have an exact parallelism with the quantities of physics. The

result has all the advantages of being a closely knit, highly deduc-

tive branch of mathematics, yet is at the same time a description

of large scale physics. Several rather startling predictions made by
this theory have been verified experimentally. Some of these were

variation of mass with speed and the possibility of annihilating

matter with the attending creation of vast quantities of heat, as

in the atomic bomb.
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312 APPENDIX 9

Quantum mechanics may be considered to be based logically on

Heisenberg's principle of indeterminacy which makes an entity
called "action" (dimensions L2T~ 1

M) fundamental both in physics
and in atomic physics. Two physical quantities whose dimensions

will multiply together and give the dimensions of action (such as

energy and time, or momentum and distance) possess a small

scale indeterminacy of such a nature that it is useless to try to

measure quantities of each so small that their product has an

order of magnitude less than Planck's "quantum of action." This

quantum is represented by h and is numerically equal to 6.6 X 10~34

joule-second. The result of this theory is that in dealing with such

things as the electrons within the atom and other entities like

neutrons, positrons, protons, and so on, it is necessary to use a

type of probability theory which has grown up into a beautifully

consistent, logical system. The net result is that while we have to

recognize the fact that Newton's laws of motion, also classical elec-

tromagnetic theory, do not hold for such small scale events as those

within the quantum of action, yet on a larger scale, the proba-
bilities involved become so extremely near to unity that we may
confidently regard them as certainties. Thus there is no contra-

diction between quantum mechanics and engineering physics; the

expression is often used that the former "extrapolates" into the

latter.



APPENDIX 10

List of Symbols Used in This Book

A area

a acceleration

B bulk modulus, blackness (0 < B < 1), flux density
C candle power, capacitance, conductivity, heat capacity per unit mass
D density, diameter

d distance

E electromotive force, voltage, effort

e linear expansion, elongation
F force

/ focal length
G conductance

g acceleration of gravity
U heat

h height, Planck's constant

/ current, moment of inertia, illumination

1 angle of incidence

K coefficient of cubical expansion
k coefficient of linear expansion, any constant

L latent heat, torque, lumens, inductance

/ length

m mass
N order of spectrum
n frequency, number of turns of wire

P power, pressure

p object distance, pitch of screw, magnet pole

q image distance, electrical quantity
R resistance

r radius, amplitude
S shear modulus
s distance

T absolute temperature, period
/ temperature, time

u initi.il velocity, velocity of observer

V volume, velocity of wave
* change in volume, final velocity, velocity of source of wave
W weight
w width of slit

X reactance

x abscissa

F Young's modulus

y ordinatc

Z impedance
2 summation
<I> magnetic flux

a angular acceleration

$ angle
X wave length

H coefficient of friction, index of refraction, permeability

coo initial angular velocity

w final angular velocity
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Aberration, chromatic, 287

Abscissa, 224

Absorbers, perfect, 176

Acceleration, 73, 81, 83

average, 76, 81

centripetal, 86, 88
definition of, 73, 81
dimensions of, 235, 245

equations for, 76, 77, 81
of gravity, 78, 91, 96

problems illustrating, 79

radial, 126

tangential, 107

uniform, 74, 81
units of, 73

Action, 9, 311

Adhesion, 186

Airplanes, 222

Alarms, burglar, 267

Algebra, summary of, 301

Alpha, 106

Alternating current, 198, 241, 249

equation, 254

radio, 267

Ammeter, 238
hot wire, 216

Ammonium chloride, 222

Ampere, 97

legal definition, 229

Amplification, 261, 270

Amplitude, 129, 136, 141, 150
of radio wave, 264

Analogy, mechanical, 249

Angle:
of incidence, 276, 278, 279
of reflection, 278
of refraction, 279

Anode, 224, 229

Antenna, 264, 268

Antinode, 145, 156

Antircsonance, 258
Archimedes' principle, 39, 41, 43, 250

Aristotle, 6

Armature, 232
of motor, 238

Astronomy, 1, 2, 3

Atom, 6, 17, 161, 202, 208, 221, 272

Atomic :

bombs, 17, 123, 311

number, 202

physics, 311

Attraction, 8

gravitational, 10, 11

Atwood, George, 93
Atwood's machine, 93

Automobiles, 222

Axle, 26, 31

B

Bat, 268

Battery:
A-, 262, 266, 267

B-, 264, 266, 267

C~, 262, 266, 267

charging of, 222

discharged, 223
lead accumulator, 222

storage, 222

Beams, bending of, 50, 51

Beats, 156

Bel, 150

Bell, electric, 232, 240
Bernoulli's principle, 41, 42, 43

Bicycle, 24, 25, 27

Biology, 1, 2, 3

Boats, 222

Boyle's law, 36, 43

Brahe, Tycho, 11

British thermal unit, 20, 171, 184
Browniaii movement, 162

Calorie, 20, 26, 171, 185

Calorimetry, 185

Capacitance, 205, 208, 249, 251 252, 257,
263, 264, 266

dimensions of, 264
Carbon, 16, 221

dioxide, 217
Cartesian divers, 37

Cathode, 224, 229

Cause, 234

Cavity magnetron, 268
Cell:

dry, 222
in parallel, 228
in series, 228

photoelectric, 267

polarized, 222

voltaic, 212, 221, 222

Celluloid, 291

Center, instantaneous, 115

Centimeter, 97

Charging storage battery, 222

Chemistry, 1, 2, 3
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Circuits:

parallel, 272, 229
parallel a.c., 258

series, 227, 229

Cohesion, 186

Coil, induction, 240
Collimator, 289

Compass, 199

Compliance, 250

Components, 83
of forces, 56, 59, 62

rectangular, 62

Compressibility, 48, 50, 51

Compression, 8

member, oO

Crmputation rules, 295
Condenser, 205, 208, 249

Conductance, 227, 229

Conduction, 170, 1/0

Conductivity, 171

table of, 172

Conductor, 203, 208
water as, 221

Conservation la\\s, 119
Constant:

dimensions of electrostatic, 235, 245
dimensions of magnetic, 235, 245

physical, 29$

Planck's, 273

Convection, 170, 173, 176
Conversion factors, 293

Copper, electrolytic, 224
Core (of electromagnet), 232
Cosine, 257, 276, 305

law, 306
table of, 307

Coulomb, 204

micro-, 204

legal definition of, 224, 229
Coulomb, Charles A ,

195
Coulomb's electrostatic law, 204, 208
Coulomb's law, 200
Critical point, 188

pressure, 191

temperature, 189, 191

Croquet ball, 7

Current, 249

alternating, 198, 240, 249
at resonance, 256
conventional, 210
dimensions of electric, 235, 245
effect of magnetic field on, 235, 236
electric, 210, 260

electron, 210, 223, 232, 235
grid, 265
in parallel circuit, 227
in series circuit, 227

microphone, 264

plate, 262

Day:
mean solar, 96
solar, 4

Decibel, 150

Degrees, 103

De Haas, 165

Demagnetization, 198

Density, 36, 37, 42, 149

flux, 234

linear, 158

Derrick, 27

Detective stories, 311

Detector, 266

Diamagnclic substance, 199, 200

Diaphragm, 260

Dielectric, 206

constcint, 204, 206, 208

Diffraction, 144, 146

dispersion by, 289

grating 289
of light, 287, 291
of sound, 155

Dimensions, 235, 245

atomic, 6

Dipping needle, 194

Dispersion, 291

by diffraction, 289

by refraction, 287

Displacement, 24, 54, 129, 136, 141

Distance, 4, 8, 12, 14, 15, 24

astronomical, 6
of distinct vision, 285

Division, method of, 300
Door opener, 267

Doppler effect, 152, 159
illustration of, 152

Dyne, 97

Earth, 10, 11

Echo, 153

Effect, 234

photoelectric, 271

Efficiency, 23, 24, 25, 30, 33
of heat engine, 167

thermal, 168

Effort, 8, 24, 27, 28, 31, 33

arm, 27

displacement, 24, 27, 28, 29, 31, 33, 34

Einstein, 311
Elastic limit, 50, 51

Elasticity, 45, 51, 149, 249
modulus of, 47

Electric:

arc, 217

bell, 232

current, 218

power, 217

Electric current, effect of:

chemical, 223

magnetic, 231

Electricity, 2, 4, 194

frictional, 204
negative, 202

positive, 202

theory of, 4

static, 203

Electrode, 229

Electrolysis, 223, 229

Electrolyte, 221
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Electromagnet, 232, 242, 260

Electromagnetic:
ether, 231

radiation, 261, 265, 268, 270, 273, 281

waves, 261, 271
Electromotive force, 211, 213, 218

back, 226, 244

direct, 226, 244

induced, 239, 242, 245
methods of producing, 239

Electron, 122, 202, 208, 210, 221, 242,

271, 272

current, 210

free, 262

Electronics, 267, 270

Electroplating, 223
Electrostatic effects, 207

Elevator, 92

Energy, 2, 3, 16, 21

chemical, 17

conservation of, 9, 16, 21, 123, 136, 166
dimensions of, 235, 245

electrical, 1 7

heat, 16, 17, 23, 274
illustrations of, 16

kinetic, 17, 18, 29, 41, 94, 97, 100, 114,

242, 271

light, 275

mechanical, 17

negative, 15

of motion, 17

of photon, 273
of position, 17

of rotation, 113

potential, 17, 18, 19, 28, 29, 41, 97

pressure, 32, 34, 41

radiant, 123
table of units of, 20

Engineering, 2

Engineers, list of, 2

English system (of units), 4

Entropy, 167

Equilibrium, 66, 71

conditions for, 71

in terms of acceleration, 81

problem illustrating, 68
rules for solving problems, 67

thermal, 176, 177

Euclid, 311

Evaporation, 187

Expansion:
coefficient of cubical, 180, 182

coefficient of linear, 1 78, 182

linear, 178

volume, 179, 181

Eyepiece, 287

Facts, 4

physical, 3, 4

Fahrenheit, 164

thermometer, 162

Ferromagnetic (substance), 199

Field:

dimensions of (magnetic), 235, 245

electric, 272

Field (cent.):

electromagnetic, 231

equation for (magnetic), 233

gravitational, 272

magnetic, 231, 260, 272

problem illustrating, 233

strength, 233

Figures:
insignificant, 295

significant, 295
Filament:

current, 262
in radio tube, 261, 262, 266

tungsten, 217

Finger-board, 158

Fluid, 36, 37, 42

Flux, 235, 244

density, 234, 244
dimensions of, 235, 245
dimensions of density, 235, 245

equation for, 235

magnetic, 242

Focus, 279, 283

Foot, 4, 96

candle, 276, 281

Force, 4, 7, 8, 12, 14, 15, 24, 95, 250

buoyant, 39, 41

centrifugal, 100

centripetal, 09
dimensions of, 235, 245
lines of, 194, 231
moment of, 65, 71

negative, 14, 15

normal, 25, 34
of friction, 15, 25

positive, 14, 15

unbalanced, 91
Forces:

addition of, 57, 58

natural, 2

resolution of, 56, 57

Fourier, 152

Frequency, 129, 136, 141, 149, 249, 261

262, 264, 273, 274

Fresnel, 271

Friction, 7, 8, 14, 15, 16, 25, 28, 30, 31
coefficient of, 25, 34, 75

fluid, 250
kinetic coefficient of, 26, 34
static coefficient of, 26, 34

viscous, 250

Fulcrum, 27

Galileo, 6, 78

Gilvanomcter, 238
G is, 36, 42

law, 181, 182

Gauss, 234

Gciger counter, 267
Generator action, 244

Geology, 1

Geometry, 4

summary of, 304

Gram, 97

Grating, 290, 291
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Gravitation, 7, 13
Newton's law of, 10, 11

Gravity, 10
acceleration of, 78
center of, 67, 68, 70, 71

Grid, 261, 262, 266
condenser, 267
leak, 266

Gyrocompass, 109
Gyroscope, 108, 109
Gyrostatic stabilizer, 109

H
Harmonics, 151, 158
Heat, 2, 26, 29, 30, 161, 163, 168, 184, 242

capacity, 184, 185, 190
from electric current, 215
insulation, 175
of fusion, 190, 191
of vaporization, 189, 191
transfer of, 170
units of, 26

Heisenber^'s principle, 311
Helix, 30, 233
Henry, 242
Henry, Joseph, 242
Hertz, 271
Hill diagram, 224
History, 1

Hooke's law, 47, 48, 51, 130, 250
Horsepower, 19

Humidity, 154
Huygens, Christian, 271
Hydraulic press, 26, 32, 33, 37
Hydrogen, 16

ions, 221

I

Illumination, 276, 281
Image, 278

distance, 285
real, 279, 281, 283
virtual, 278, 281, 285

Impedance, 254, 256, 259
Impulse, 119, 124

angular, 122
Incidence, angle of, 276, 279
Indicator, 268

plan position, 269
Inductance, 241, 245, 249, 251, 252, 257,

262, 264
dimensions of, 242
problem illustrating, 243

Induction coil, 240
Inertia, 8, 12, 94, 100, 139, 250

electrical, 242
moment of, 111, 116, 135

Influence machine, 207
Input, 23, 24, 33
Insulator, 203, 208
Intelligence, 3
Intensity, 142, 150
Interference, 144, 155

constructive, 288
destructive, 289

Interference (cont.)i
of light, 287, 291

lonization chamber, 267
Ionosphere, 269
Ions, 194, 221, 269

negative, 203
positive, 203

IR drop, 214, 225, 262

Jackscrew, 29, 30
problem illustrating, 30

Joule, 15, 19, 97
Joule's law, 219
Jupiter, 126

K-shell, 202
Kepler, Johann, 11
Kepler's law, 11

Kilogram, 4, 5, 18
force, 96
mass, 96
standard, 96

Kilowatt, 19
Kundt's tube, 156

L-shell, 202
Language, 1

Laws:
physical, 3, 311
probability, 311

Lead :

accumulator, 222
dioxide, 223
monoxide, 223
sulphate, 223

Left hand rule, 232
Length, 95, 235, 245

focal, 285
table of units of, 275

Lens formula, thin, 286
Lenses, 280, 283

achromatic, 287
converging, 283, 284, 285
diverging, 283, 285
negative, 283
objective, 287
positive, 283

Lenz's law, 244, 246
Lever, 26, 27, 32
Leyden jar, 207
Light, 2, 4, 145, 261

electric, 217
infrared, 261, 274
reflection of, 278
refraction of, 279
-second, 275
speed of, 273
theories of, 271
ultraviolet, 261, 274
visible, 272, 274
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Light (cont.):

waves, 281

-year, 275
Lines of force:

direction of, 232

magnetic- 194, 199, 232

Liquid, 36, 42

Logarithm:
characteristic of, 309

interpolation, 309
mantissa of, 309

table, 308

Logic, 234

Loudness, 149, 158

Lumen, 276, 281

M
M-shell, 203

Machines, 23

compound, 26, 27, 33

perpetual motion, 16, 23

simple, 26, 27, 33

Magnet:
earth as, 193

electro-, 198, 257

elementary, 193, 198

lifting, 232

permanent, 197, 198

Magnetic:
effects, 207, 246

field, 195, 196, 236, 260
field strength, 196, 199

fields, methods of producing, 245

Magnetism, 2, 192, 199

Manganese dioxide, 222

Mass, 3, 4, 8, 90, 94, 100, 122, 124, 241, 250
dimensions of, 235, 245
law of conservation of, 123
of gas, 36

Mathematics, 1, 2

Matter, 2, 3, 17

states of, 186

Maxwell, 271
Mechanical advantage, 24, 27, 28, 29,

32, 33

actual, 25, 34
ideal, 24, 25, 27, 28, 29, 34
of compound machine, 27

Mechanics, 2, 249

Newtonian, 6

quantum, 6, 311

Megaparsec, 275

Mercury, 122, 311

Meter, 4, 5, 237

alternating current, 257

-candle, 276, 281

standard, 196
Metric system, 4

Mho, 227

Michelson-Morley experiment, 269

Micro, 196

Microphone, 262, 264

Microscope, 287

electron, 2

optical, 2

Mil, 103, 109

Millioersted, 196
Mirror:

concave, 278
freak, 279

parabolic, 278, 279

Modulation, 261, 264, 270

Modulator, 268
Modulus:

bulk, 48, 49, 51
of elasticity, 47

rigidity, 50

shear, 49, 50, 51

Young's, 47, 48, 50, 51

Molecule, 16, 161
Moment of inertia, 116

of areas, 113
of cylinder, 112, 116
of flywheel, 112, 116
of hollow cylinder, 112, 116
of rod, 113, 116
of sphere, 112, 116
units of, 11 }

Momentum, 119, 122, 124

angular, 122, 124
conservation of, 121
conservation of angular, 122
of photon, 273

Moon, 269
Motion:

causes of, 65

damped harmonic, 130
direction of, 2

pictures, 267
rate of, 18

rotatory, 64, 71, 103, 104

translatory, 64, 71, 94

Motor, 237

action, 244

Multiplication, methods of, 297, 299

Mysteries, 311

N
Neptunium, 203

Neutrons, 17, 202, 208
mass of, 202

Newton, 4, 5, 18, 97

-meter, 97

Newton, Sir Isaac, 6, 9, 10, 11, 271
Newton's laws, 6, 312

first law, 7, 13, 14

of gravitation, 10, 11, 13

second law, 8, 13. 90, 92, 94, 100,

111, 120
third law, 8, 9, 10, 13, 15, 33, 68, 92

Nitrogen, 217

Node, 145, 156

Number, pure, 23, 24, 25, 37, 46

Object distance, 285

Objective, 287

Oersted, 196

Ohm, 97, 213
Ohm's law, 213, 219, 251

Omega, 106

Ordinate, 224
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Origin, 54
Oscillation :

center of, 134, 137
in radio tube, 261, 262, 264, 270

Oscillator, 268

Oscilloscope, cathode-ray, 268
Osmium, 11

Output, 23, 24, 33

Overtone, 157, 158

Oxygen, 16

Paramagnetic (substance), 199, 200
Pascal's principle, 37, 43
Pendulum
compound, 134, 137

physical, 134, 137

seconds, i32

simple, 131, 136

Percussion, center of, 134, 137

Period, 129, 136, 141, 146

Permeability, 233, 234, 236, 244

Phase, 141, 145, 151

angle, 129, 136, 259

Philosophy, 1

Photoelectric cffert, 271

Photometer, grease spot, 277

Photometry, 277, 2SI

Photon, 271, 273, 281, 287, 288

Physics, 1, 2, 4

Pipes, organ, 157

closed, 157

open, 157

Pitch, 222
of jackscrew, 29, 30
of sound, 149, 158

Planck, 271,312
Plane:

inclined, 26, 28

problem illustrating, 29

Planets, 23

Plate, 262, 266

circuit, 262

current, 262

Plutonium, 203

Polarization, 145, 146, 229
of light, 290, 291

Polaroid, 291

Pole, 195
dimensions of magnetic, 235, 245

magnetic, 199, 236

North, 192, 232

pieces, 237

South, 192, 232

unit, 195, 199
Potential:

difference, 206, 218
dimensions of electric, 235, 245

drop, 214, 226

high, 210, 226
in electric circuit, 224

low, 210, 225

Pound, 4, 5

British, 96

force, 96

Pound (cont.) :

mass, 96

standard, 4
United States, 96

Poundal, 96

Power, 18, 19, 21, 23, 24, 256

factor, 257, 259
units of, table, 21

Press, hydraulic, 26, 32, 33, 37

Pressure, 32, 34, 45

energy, 32, 34

gage, 36, 181

hydrostatic* 37
of gas, 36

total, 36

Primary circuit, 240

Principle, 3

superheterodyne, 268

Prism, 280, 290

Projectile, 83, 99

theoiy of light, 271

Proton, 202, 208, 210

mass, 202
Psi.

function, 141, 272

waves, 272, 273, 287, 290

Psychology, 1

Pull, 8

Pulley, 24, 26, 28

Push, 8

side, 237

Puzzles, 311

Quadrant, 103

Quality, 149, 158

Quantity of electricity, 235, 245

Radar, 268, 270, 274
in peace, 269
in war, 269

Radian, 103, 109

Radiation, 170, 173, 176

electromagnetic, 261, 265, 268, 270,
273, 281

short wave, 274
Radio.

impossibility of, 261

tube, 261

wave, 264

Radioactivity, 17

Radiometer, 274
Radiomicrometer, 274

Ray, 142

gamma, 261
of light, 287

parallel, 279

Roentgen, 274

secondary cosmic, 261, 274

Reactance, 254, 256, 257, 258

capacitive, 254, 256, 258

inductive, 254, 256, 258

Reaction, 9
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Receiver, 260, 265

Rectification, 261, 265, 270

Rectifier, 266

Reflection, 142, 146

angle of, 278

diffuse, 143, 278
of light, 278
of sound, 153

Reflectors, perfect, 176

Refraction, 143, 146

angle, 279

dispersion by, 287
index of, 144, 146, 279, 281
law of, 281
of light, 279

Repulsion, 8, 192

Resistance, 7, 8, 24, 25, 27, 28, 30, 33, 250

arm, 27
dimensions of electric, 235, 245

displacement, 24, 25, 27, 28, 29, 30, 31,

33, 34
effect of, in a c

, 250, 252
in parallel circuit, 227
in series circuit, 227

Resistivity, 214, 218

Resonance, 256, 259

scries, 256

Resultant, 54, 55, 58, 61

Reverberation, time of, 154, 159

Revolution, 103

Rocket, V-2, 269
Rods:

twisting of, 50, 51

weightless, 111

Root-mean-square value, 257, 258

Rope stretchers, 54
Rule:

left hand, 232, 236, 245
thumb and two finger, 237, 238, 245

Salammoniac, 221

Sawdust, 139

Scalar, 53, 61

Screw, 26

Searchlight, 279

Second, 4, 5, 96

Secondary circuit, 240

Significant figures, 295
Silver nitrate, 223

Simple harmonic motion, 126, 136, 249
acceleration in, 128

energy in, 136
force in, 129

velocity in, 127

Sine, 305

law, 306
table of, 307

wave, 252

Sinusoid, 253

Sleeping top, 104

Slug, 96

metric, 96

Sociology, 1

Solenoid, 233

Sound, 2, 141, 145, 148, 158, 260
as energy, 154
diffraction of, 155
interference of, 155
reflection of, 153

speed of, 148

wave, 264
Sound shadow, 155

Sounding, 154

Space, 3, 231

Sparrows, 10

Speaker, loud, 267

Specific.

gravity, 36, 40, 41, 42, 223

heat, 184, 185, 190

Spectroscope, 2

Spec troscopir analysis, 290

Spectrum, 290, 291

lines, 289
order of, 289

Speed, 18, 53, 73, 74, 75, 76, 123

angular, 104, 109

drift, 211
of light, 211, 273
of sound, 200
of transmission of message, 260
of wave, 142

signal, 211

Stiffness, 250
Stove pipe, 113

Strain, 46, 51, 234

shearing, 46

tensile, 46

volume, 46

Strength, ultimate, 50, 51

Stress, 32,45, 51, 234

shearing, 45

tensile, 45

Sublimation, 190

Sublime, 188

Sugar, 290

Sulphuric acid, 223

Sun, 10, 11

Supersonic, 268

Symbols used, table of, 313

Systems of units, 4, 95

cgs., 97

electrical, 97

English absolute, 96

English engineering, 96
metric engineering, 96
M.K S

,
97

Telegraph, 232

Telephone, 232, 260

Telescope, 2, 279, 287

observing, 289

Television, 267

Temperature, 2, 162, 163, 164, 168, 184

absolute, 168, 181

of gas, 36
of sun, 175

Temperature scales, 164

centigrade, 164, 165

centigrade absolute, 165
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Temperature scales (cont.) :

Fahrenheit, 164, 165

Fahrenheit absolute, 164, 165

Kelvin, 165

Tension, 8

member, 60
of string, 158

Theories, physical, 3, 311

Theory, 2, 4

of light, 271

of relativity, 269, 311

wave mechanics, 271

Thermocouple, 217

Thermodynamics :

first law of, 166, 168

second law of, 166, 168

Thermoelectricity, 217, 219

Thermopiles, 274
Thermos bottle, 175

Theta, 106

Thrust, 8

Time, 3, 4, 8, 12, 18, 95, 235, 245

Tongs, 25

Torques, 65, 111

clockwise, 66

counterclockwise, 66
sum of, 117

Torus, 241

Tourmaline, 290

Trains, 222

Transformer, 240, 267

step down, 241

step up, 241

Transmitter, 260

Triangles:

properties of, 57

reference, 57

Triple point, 187, 190

Truss, problem involving, 60

Tube:

electronic, 270

evacuated, 261

radio, 261

Tungsten filament, 217

u
Units, 4

absolute, 95

engineering, 95
of angle, 103
of energy, table of, 20
of heat, table of, 26
of power, table of, 21

physical, 4, 5, 15

systems 0^95

Velocity, 17, 53, 73, 83

angular, 105, 109
dimensions of, 235, 245

group, 272
of psi-wave, 273

Vibrations, 260
Violin string, 158

Volt, 97, 206

Volta, Alessandro, 222

Voltage, 206, 208, 214, 226, 249

induced, 264
in parallel circuit, 227
in series circuit, 227

Voltmeter, 238
Volume of gas, 36

W
Watt, 19, 97

Wave, 139, 146

carrier, 264

compressional, 141, 146

electromagnetic, 260, 271

-front, 143, 146, 288

light, 231, 261

longitudinal, 141, 145, 146

mathematical, 272

radio, 261, 264

sine, 252

sound, 265

standing, 156

stationary, 145, 146, 157

theory of light, 271

transverse, 139, 146, 290
Wave length, 141, 146, 261, 273, 287, 288
measurement of, 289

Weber, 234, 235

Wedge, 27

Weight, 8, 11, 13

Wheel, 26

problem illustrating, 31

Whiz-bang, 153

Wood, balsa, 250

Work, 14, 15, 16, 18, 19, 21, 28, 29
dimensions of, 235

negative, 15

of rotation, 113

positive, 15

Worm, 10

X-rays, 261

hard, 274

soft, 274

Vacuum, 3, 231

Vector, 53, 61

parallelogram method of adding, 54, 61

polygon method of adding, 54, 61

rotating, diagram, 252, 258

sum, 54, 61

triangle method of adding, 54, 61

Yard, 4, 5

standard, 4

Young's modulus, 47, 48, 50, 51

Zinc, 221














